阳极
电解质
石墨
电镀(地质)
材料科学
阴极
锂(药物)
电池(电)
光电子学
电气工程
化学
复合材料
电极
物理
工程类
物理化学
功率(物理)
内分泌学
医学
量子力学
地球物理学
作者
Yeon Tae Jeong,Hong Rim Shin,Jin Hong Lee,Myung-Hyun Ryu,Sinho Choi,Hansung Kim,Kyu‐Nam Jung,Jong‐Won Lee
标识
DOI:10.1016/j.electacta.2023.142761
摘要
In recent years, tremendous efforts have been devoted to searching for the fast-charging methodology of lithium-ion battery (LIB) with widespread practical application of the electric vehicles, since the uncontrolled Li plating on the graphite anode under the fast-charging condition can lead the accelerated capacity decay and cause the safety issues of LIB. Here, we present mechanistic insights into the pulse-current-based fast-charging to aid with suppressing Li plating on the graphite anode. Compared with a conventional fast-charging protocol of the constant current method, the full-cell assembled with graphite anode and LiNi0.6Co0.2Mn0.2O2 cathode exhibits the improved fast-charging capability and cycle performance under the pulse-charging protocol. In particular, the graphite anode after prolonged 300 cycles shows a clean surface free of plated Li, which confirms that the pulse-charging protocol effectively inhibits Li plating on the anode even under fast-charging conditions. Furthermore, the physics-based numerical modeling results demonstrate that the pulse-current redistributes the accumulated Li+ species at the electrolyte/anode interface periodically, which mitigates the anode potential drop and prevents consequent Li plating.
科研通智能强力驱动
Strongly Powered by AbleSci AI