Integration of hyperspectral imaging, non-targeted metabolomics and machine learning for vigour prediction of naturally and accelerated aged sweetcorn seeds

高光谱成像 代谢组学 代谢组 化学 人工智能 计算机科学 生物系统 色谱法 生物
作者
Tingting Zhang,Lu Long,Ni Yang,Ian D. Fisk,Wensong Wei,Li Wang,Jing Li,Qun Sun,Rensen Zeng
出处
期刊:Food Control [Elsevier]
卷期号:153: 109930-109930 被引量:18
标识
DOI:10.1016/j.foodcont.2023.109930
摘要

Understanding and predicting the storage stability of sweetcorn seeds is critical for effective supply chain management, however, prediction ability relies heavily on accelerated ageing (AA) studies and this is not always directly applicable to natural ageing (NA). In this study, hyperspectral imaging (HSI) and non-targeted metabolomics (LC-MS/MS) were integrated using PLS-R, SVM-R and OPLS-DA to predict loss of seed vigour in NA seeds, using data based on AA seeds. The inconsistencies in the pattern of spectral variation between seeds undergoing AA and NA were first identified. AA-based vigour prediction models were then built using all wavelengths and effective wavelengths (EWs) selected by regression coefficients. These models were externally validated by independent AA and NA seed datasets, respectively. The results yielded satisfactory predictions for AA seeds (R2 ≥ 0.814), but low precision for NA seeds (R2 ≤ 0.696). Metabolome analysis identified 54 differential metabolites, containing a large proportion of amino acids, dipeptides and their derivatives, which were important substances reflecting discrepancies between the ageing mechanisms of AA and NA seeds. Subsequently, N-H bond-related wavebands were deemed to be a possible interference factor in the models' practicability. After removing the N-H bond-related EWs, the AA-based models achieved better performance on NA seeds, with R2v-2 value increasing from 0.696 to 0.720 for Lvsechaoren and from 0.668 to 0.727 for Zhongtian 300. In summary, coupling HSI, LC-MS/MS and machine learning was shown as an appropriate approach for non-destructive monitoring and predicting the vigour of stored sweetcorn seeds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谦让皮卡丘完成签到,获得积分10
刚刚
De.完成签到 ,获得积分10
1秒前
1秒前
1秒前
贾哲宇发布了新的文献求助10
1秒前
2秒前
vlog123发布了新的文献求助10
2秒前
十字路口完成签到 ,获得积分10
2秒前
健康的正豪完成签到,获得积分10
3秒前
chenjing2012发布了新的文献求助10
3秒前
3秒前
搜集达人应助will采纳,获得10
3秒前
轴承完成签到 ,获得积分10
3秒前
sliver完成签到,获得积分10
3秒前
顾耷发布了新的文献求助10
4秒前
4秒前
充电宝应助idealist0315采纳,获得10
4秒前
动听月饼完成签到,获得积分10
4秒前
小杭76应助慧慧采纳,获得10
5秒前
小疯子发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
7秒前
Perrylin718发布了新的文献求助10
7秒前
浮游应助rainsy采纳,获得10
8秒前
8秒前
易落发布了新的文献求助10
8秒前
9秒前
min完成签到,获得积分10
9秒前
9秒前
momo发布了新的文献求助10
9秒前
毅力发布了新的文献求助10
9秒前
Ning_完成签到 ,获得积分10
9秒前
缥缈鞯发布了新的文献求助10
10秒前
搜集达人应助静默采纳,获得10
11秒前
11秒前
今后应助zihuan采纳,获得10
12秒前
沙心完成签到,获得积分0
12秒前
喻鞅完成签到,获得积分0
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434707
求助须知:如何正确求助?哪些是违规求助? 4547028
关于积分的说明 14205727
捐赠科研通 4467036
什么是DOI,文献DOI怎么找? 2448402
邀请新用户注册赠送积分活动 1439329
关于科研通互助平台的介绍 1416068