Integration of hyperspectral imaging, non-targeted metabolomics and machine learning for vigour prediction of naturally and accelerated aged sweetcorn seeds

高光谱成像 代谢组学 代谢组 化学 人工智能 计算机科学 生物系统 色谱法 生物
作者
Tingting Zhang,Lu Long,Ni Yang,Ian D. Fisk,Wensong Wei,Wei Wang,Jing Li,Qun Sun,Rensen Zeng
出处
期刊:Food Control [Elsevier]
卷期号:153: 109930-109930 被引量:6
标识
DOI:10.1016/j.foodcont.2023.109930
摘要

Understanding and predicting the storage stability of sweetcorn seeds is critical for effective supply chain management, however, prediction ability relies heavily on accelerated ageing (AA) studies and this is not always directly applicable to natural ageing (NA). In this study, hyperspectral imaging (HSI) and non-targeted metabolomics (LC-MS/MS) were integrated using PLS-R, SVM-R and OPLS-DA to predict loss of seed vigour in NA seeds, using data based on AA seeds. The inconsistencies in the pattern of spectral variation between seeds undergoing AA and NA were first identified. AA-based vigour prediction models were then built using all wavelengths and effective wavelengths (EWs) selected by regression coefficients. These models were externally validated by independent AA and NA seed datasets, respectively. The results yielded satisfactory predictions for AA seeds (R2 ≥ 0.814), but low precision for NA seeds (R2 ≤ 0.696). Metabolome analysis identified 54 differential metabolites, containing a large proportion of amino acids, dipeptides and their derivatives, which were important substances reflecting discrepancies between the ageing mechanisms of AA and NA seeds. Subsequently, N-H bond-related wavebands were deemed to be a possible interference factor in the models' practicability. After removing the N-H bond-related EWs, the AA-based models achieved better performance on NA seeds, with R2v-2 value increasing from 0.696 to 0.720 for Lvsechaoren and from 0.668 to 0.727 for Zhongtian 300. In summary, coupling HSI, LC-MS/MS and machine learning was shown as an appropriate approach for non-destructive monitoring and predicting the vigour of stored sweetcorn seeds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
荔枝完成签到 ,获得积分10
1秒前
陈文学完成签到,获得积分10
1秒前
小唐完成签到,获得积分10
3秒前
星星完成签到,获得积分10
5秒前
阜睿完成签到 ,获得积分10
7秒前
小高同学完成签到,获得积分10
8秒前
onestepcloser完成签到 ,获得积分10
10秒前
kchen85完成签到,获得积分0
10秒前
等待断秋完成签到,获得积分10
10秒前
甜甜秋荷完成签到,获得积分10
11秒前
advance完成签到,获得积分10
16秒前
离子电池完成签到,获得积分10
17秒前
氟兊锝钼完成签到 ,获得积分10
19秒前
cccyyb完成签到,获得积分10
22秒前
甜甜乘云完成签到,获得积分10
23秒前
steven完成签到 ,获得积分10
25秒前
淡然的怜容完成签到,获得积分10
27秒前
兴奋的定帮完成签到 ,获得积分10
27秒前
小柯完成签到,获得积分10
29秒前
yqcsysu完成签到 ,获得积分10
29秒前
小知了完成签到,获得积分10
29秒前
小旺旺给小旺旺的求助进行了留言
30秒前
摆哥完成签到,获得积分10
31秒前
Cynthia完成签到 ,获得积分10
33秒前
雍元正完成签到 ,获得积分0
36秒前
pure完成签到 ,获得积分10
36秒前
溜溜完成签到,获得积分10
39秒前
te完成签到 ,获得积分10
41秒前
科研通AI2S应助甜甜乘云采纳,获得10
42秒前
海边听海完成签到 ,获得积分10
44秒前
mailgo完成签到,获得积分10
44秒前
动听的飞松完成签到 ,获得积分10
46秒前
许xx完成签到 ,获得积分10
47秒前
一二完成签到 ,获得积分10
50秒前
风不尽,树不静完成签到 ,获得积分10
55秒前
微生完成签到 ,获得积分10
56秒前
杂菜流完成签到,获得积分10
58秒前
沈客卿完成签到,获得积分10
58秒前
59秒前
SAINT完成签到 ,获得积分10
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150630
求助须知:如何正确求助?哪些是违规求助? 2802177
关于积分的说明 7846216
捐赠科研通 2459431
什么是DOI,文献DOI怎么找? 1309256
科研通“疑难数据库(出版商)”最低求助积分说明 628803
版权声明 601757