A Patch Diversity Transformer for Domain Generalized Semantic Segmentation

计算机科学 变压器 分割 人工智能 特征学习 机器学习 模式识别(心理学) 工程类 电压 电气工程
作者
Pei He,Licheng Jiao,Ronghua Shang,Xu Liu,Fang Liu,Shuyuan Yang,Xiangrong Zhang,Shuang Wang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (10): 14138-14150 被引量:5
标识
DOI:10.1109/tnnls.2023.3274760
摘要

Domain generalization (DG) is one of the critical issues for deep learning in unknown domains. How to effectively represent domain-invariant context (DIC) is a difficult problem that DG needs to solve. Transformers have shown the potential to learn generalized features, since the powerful ability to learn global context. In this article, a novel method named patch diversity Transformer (PDTrans) is proposed to improve the DG for scene segmentation by learning global multidomain semantic relations. Specifically, patch photometric perturbation (PPP) is proposed to improve the representation of multidomain in the global context information, which helps the Transformer learn the relationship between multiple domains. Besides, patch statistics perturbation (PSP) is proposed to model the feature statistics of patches under different domain shifts, which enables the model to encode domain-invariant semantic features and improve generalization. PPP and PSP can help to diversify the source domain at the patch level and feature level. PDTrans learns context across diverse patches and takes advantage of self-attention to improve DG. Extensive experiments demonstrate the tremendous performance advantages of the PDTrans over state-of-the-art DG methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
368DFS发布了新的文献求助10
刚刚
刚刚
可可完成签到 ,获得积分10
刚刚
搜集达人应助王泽采纳,获得10
1秒前
达芬琪发布了新的文献求助10
1秒前
火星上稀发布了新的文献求助10
1秒前
1秒前
1秒前
思源应助小陈采纳,获得10
1秒前
lyhstudent发布了新的文献求助30
1秒前
2秒前
HHH发布了新的文献求助10
2秒前
小二郎应助大写的笨采纳,获得10
2秒前
2秒前
2秒前
2秒前
顾矜应助DL_LBK采纳,获得10
3秒前
胡胡嘉嘉磊磊完成签到,获得积分10
3秒前
Lucas应助majf采纳,获得10
3秒前
3秒前
QIE发布了新的文献求助40
3秒前
散散发布了新的文献求助10
3秒前
4秒前
4秒前
ocag发布了新的文献求助10
4秒前
4秒前
aniver完成签到 ,获得积分10
5秒前
歪歪扣叉完成签到,获得积分20
5秒前
iNk应助KM比比采纳,获得10
6秒前
6秒前
6秒前
果实发布了新的文献求助10
6秒前
zxh完成签到,获得积分10
7秒前
csm完成签到,获得积分10
7秒前
张津浩发布了新的文献求助10
7秒前
无敌阿东完成签到,获得积分10
7秒前
杨小辉发布了新的文献求助10
7秒前
8秒前
简隋英发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5473178
求助须知:如何正确求助?哪些是违规求助? 4575418
关于积分的说明 14352529
捐赠科研通 4502905
什么是DOI,文献DOI怎么找? 2467377
邀请新用户注册赠送积分活动 1455298
关于科研通互助平台的介绍 1429322