环境科学
农学
肥料
一氧化二氮
肥料
土壤有机质
温室气体
生物量(生态学)
作物产量
有机质
沼气
含水量
土壤水分
化学
土壤科学
生物
生态学
工程类
有机化学
岩土工程
作者
Fanjing Kong,Qing Li,Zhimin Yang,Yu‐Cheng Chen
标识
DOI:10.1016/j.jenvman.2023.118339
摘要
The use of organic fertilizer for agricultural production can reduce the use of chemical fertilizer (CF), reduce greenhouse gas emissions, and maintain crop production. However, biogas slurry (BS), a liquid with a high moisture content and a low C/N ratio, differs from commercial organic fertilizer and manure in terms of its impact on the soil N cycle. Replacing CF with BS needs to be reconsidered regarding soil nitrous oxide (N2O) emissions and crop production in terms of fertilization, agricultural land type, and soil characteristics. For this systematic review, the results of 92 published studies worldwide were collected. Based on the findings, the combined application of BS and CF can significantly increase soil total N (TN), microbial biomass N (MBN), and soil organic matter (SOM) levels. The Chaol and ACE index values of soil bacteria were increased by 13.58% and 18.53%, whereas those of soil fungi were decreased by 10.45% and 14.53%, respectively. At a replacement ratio (rr) ≤ 70%, crop yield was promoted by 2.20%-12.17%, and soil N2O emissions were reduced by 1.94%-21.81%. A small rr (≤30%) was more conducive to growth, and a moderate rr (30% < rr ≤ 70%) was more favorable for N2O emission reduction, especially in the dryland crop system. However, at rr = 100%, soil N2O emissions in neutral and alkaline dryland soil were increased by 28.56%-32.22%. The importance analysis of the influencing factors showed that the proportion of BS, the N application rate, and the temperature were the factors affecting soil N2O emissions. Our results provide a scientific basis for the safe use of BS in agricultural systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI