Deep learning architecture for 3D image super-resolution of late gadolinium enhanced cardiac MRI

人工智能 卷积神经网络 深度学习 分割 磁共振成像 图像分辨率 计算机视觉 计算机科学 模式识别(心理学) 医学 磁共振弥散成像 双三次插值 实时核磁共振成像 插值(计算机图形学) 图像(数学) 放射科 线性插值
作者
Roshan Reddy Upendra,Richard Simon,Cristian A. Linte
出处
期刊:Journal of medical imaging [SPIE - International Society for Optical Engineering]
卷期号:10 (05)
标识
DOI:10.1117/1.jmi.10.5.051808
摘要

PurposeHigh-resolution late gadolinium enhanced (LGE) cardiac magnetic resonance imaging (MRI) volumes are difficult to acquire due to the limitations of the maximal breath-hold time achievable by the patient. This results in anisotropic 3D volumes of the heart with high in-plane resolution, but low-through-plane resolution. Thus, we propose a 3D convolutional neural network (CNN) approach to improve the through-plane resolution of the cardiac LGE-MRI volumes.ApproachWe present a 3D CNN-based framework with two branches: a super-resolution branch to learn the mapping between low-resolution and high-resolution LGE-MRI volumes, and a gradient branch that learns the mapping between the gradient map of low-resolution LGE-MRI volumes and the gradient map of high-resolution LGE-MRI volumes. The gradient branch provides structural guidance to the CNN-based super-resolution framework. To assess the performance of the proposed CNN-based framework, we train two CNN models with and without gradient guidance, namely, dense deep back-projection network (DBPN) and enhanced deep super-resolution network. We train and evaluate our method on the 2018 atrial segmentation challenge dataset. Additionally, we also evaluate these trained models on the left atrial and scar quantification and segmentation challenge 2022 dataset to assess their generalization ability. Finally, we investigate the effect of the proposed CNN-based super-resolution framework on the 3D segmentation of the left atrium (LA) from these cardiac LGE-MRI image volumes.ResultsExperimental results demonstrate that our proposed CNN method with gradient guidance consistently outperforms bicubic interpolation and the CNN models without gradient guidance. Furthermore, the segmentation results, evaluated using Dice score, obtained using the super-resolved images generated by our proposed method are superior to the segmentation results obtained using the images generated by bicubic interpolation (p < 0.01) and the CNN models without gradient guidance (p < 0.05).ConclusionThe presented CNN-based super-resolution method with gradient guidance improves the through-plane resolution of the LGE-MRI volumes and the structure guidance provided by the gradient branch can be useful to aid the 3D segmentation of cardiac chambers, such as LA, from the 3D LGE-MRI images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助荣耀采纳,获得10
刚刚
刚刚
香蕉觅云应助小小沙采纳,获得30
刚刚
福福完成签到 ,获得积分10
1秒前
田様应助哈哈哈采纳,获得10
1秒前
大脑袋应助vetboy采纳,获得30
2秒前
2秒前
3秒前
3秒前
科研通AI5应助x菜鸡博士采纳,获得30
3秒前
完美世界应助南昌黑人采纳,获得10
3秒前
唐谦发布了新的文献求助10
4秒前
Alexander L完成签到,获得积分10
5秒前
我有一头小毛驴应助psh采纳,获得20
5秒前
领导范儿应助Manchester4607采纳,获得10
5秒前
5秒前
7秒前
wang发布了新的文献求助10
7秒前
7秒前
DE2022发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
古风发布了新的文献求助10
8秒前
善良傲珊发布了新的文献求助10
9秒前
文静从雪发布了新的文献求助10
10秒前
PHDq完成签到,获得积分10
10秒前
科研通AI5应助Toey采纳,获得10
11秒前
司空灵竹发布了新的文献求助10
12秒前
斯文败类应助凶狠的秋柳采纳,获得10
12秒前
13秒前
疆男发布了新的文献求助10
14秒前
DE2022完成签到,获得积分10
14秒前
境遇完成签到 ,获得积分10
15秒前
肥而不腻的羚羊完成签到,获得积分10
15秒前
16秒前
16秒前
烟花应助泡泡玛卡巴卡采纳,获得10
18秒前
18秒前
粗犷的凝芙完成签到 ,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555252
求助须知:如何正确求助?哪些是违规求助? 3130871
关于积分的说明 9389097
捐赠科研通 2830384
什么是DOI,文献DOI怎么找? 1555991
邀请新用户注册赠送积分活动 726370
科研通“疑难数据库(出版商)”最低求助积分说明 715737