Predicting physical activity levels from kinematic gait data using machine learning techniques

计算机科学 运动学 人工智能 惯性测量装置 可穿戴计算机 机器学习 步态 步态分析 运动分析 随机森林 模式识别(心理学) 物理医学与康复 医学 物理 经典力学 嵌入式系统
作者
Svonko Galasso,Renato Baptista,Mario Molinara,Serena Pizzocaro,Rocco Salvatore Calabrò,Alessandro Marco De Nunzio
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:123: 106487-106487 被引量:7
标识
DOI:10.1016/j.engappai.2023.106487
摘要

Objective analysis of gait abilities (Gait Analysis, GAn) in clinic is an essential motor assessment to improve clinical decision-making and provide precision rehabilitation approaches to recover gait functions. GAn is usually based on wearable motion sensors or camera-based systems, which generate an extensive set of data which are challenging to manage, analyse, and interpret. This makes GAn a time-consuming unfeasible assessment approach in clinical practice. Machine Learning (ML) techniques can provide a viable solution, as they can handle massive time series and complex data. This study aims to correctly classify subjects' physical activity levels, using as ground truth a self-reported questionnaire (International Physical Activity Questionnaire, IPAQ), via kinematic features provided by wearable wireless Inertial Measurement Unit (IMU) sensors. Kinematic gait data were collected from 37 healthy subjects (24 male and 13 female) while walking on a sensorised treadmill at natural speed. Velocity, acceleration, jerk, and smoothness were calculated using the kinematic features and used to perform statistical feature extraction. The Neighbourhood Component Analysis (NCA) algorithm was used to process the statistical features space and select the most significant ones. Several models have been trained and tested before and after the feature selection to validate the approach's effectiveness. Feature reduction resulted in a significant increase in accuracy for K-Nearest Neighbours (KNN) (81.978 ± 0.368), Random Forest (84.044 ± 3.409) and Rough-Set-Exploration-System Library K-Nearest Neighbours (RSesLib KNN) (83.956 ± 0), with an improvement of ≈20%. The performance of the best-performing classifiers was then analysed, observing the behaviour of accuracy by varying the number of features considered.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心灵美自中完成签到,获得积分10
刚刚
fuwenzhang完成签到,获得积分10
1秒前
1秒前
2秒前
量子星尘发布了新的文献求助10
4秒前
Lin发布了新的文献求助20
4秒前
Hello应助汤圆采纳,获得10
5秒前
陈陈陈皮完成签到,获得积分10
5秒前
傢誠发布了新的文献求助30
6秒前
懒大王发布了新的文献求助10
6秒前
6秒前
HJY完成签到,获得积分10
6秒前
乐乐应助敏敏采纳,获得10
6秒前
XylonYu发布了新的文献求助10
7秒前
季英兰发布了新的文献求助30
7秒前
汉堡包应助深空采纳,获得10
9秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
领导范儿应助傢誠采纳,获得10
14秒前
不晚完成签到,获得积分10
17秒前
贰鸟应助Lin采纳,获得10
18秒前
augur完成签到,获得积分10
19秒前
懒大王完成签到,获得积分10
19秒前
20秒前
风趣的平蓝完成签到,获得积分20
21秒前
XylonYu完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
21秒前
22秒前
22秒前
能干夏波完成签到,获得积分10
23秒前
25秒前
zzz发布了新的文献求助10
25秒前
25秒前
量子星尘发布了新的文献求助10
27秒前
27秒前
程忆发布了新的文献求助10
29秒前
婕婕发布了新的文献求助10
29秒前
无限桐发布了新的文献求助10
30秒前
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3659533
求助须知:如何正确求助?哪些是违规求助? 3221097
关于积分的说明 9739025
捐赠科研通 2930423
什么是DOI,文献DOI怎么找? 1604419
邀请新用户注册赠送积分活动 757275
科研通“疑难数据库(出版商)”最低求助积分说明 734315