神经形态工程学
计算机科学
暗视
明视
油藏计算
光电二极管
适应(眼睛)
GSM演进的增强数据速率
人工智能
边缘计算
材料科学
计算机视觉
光电子学
人工神经网络
光学
物理
循环神经网络
视网膜
作者
Nanjia Jiang,Jian Tang,Woyu Zhang,Yi Li,Na Li,Xiuzhen Li,Xi Chen,Renrui Fang,Zeyu Guo,Fei Wang,Jun Wang,Zhi Li,Congli He,Guangyu Zhang,Zhongrui Wang,Dashan Shang
标识
DOI:10.1002/adom.202300271
摘要
Abstract Artificial visual systems that dynamically process spatiotemporal optoelectronic signals under complex real‐life environments bear a wide spectrum of edge applications. Despite significant progress in optoelectronic sensors and neuromorphic computing algorithms, developing visual systems that can adapt to a broad illumination range while retaining high performance, high efficiency, and low training costs remains a challenge. Here, this work reports a bioinspired in‐sensor reservoir computing (RC) for self‐adaptive visual recognition. By leveraging voltage‐tunable photoresponses of the MoS 2 ‐based phototransistor array, the RC system demonstrates both scotopic and photopic adaptation functions and maintains a recognition accuracy of 91%. The horizontal modulation (HM) block enables the reservoir to adapt automatically in real‐time under changing illumination conditions, yielding a 90.64% recognition accuracy (14.21% improvement over conventional RC systems). These results pave the way for the emergence of a reconfigurable in‐sensor RC system with broad applications and enhanced performance for an efficient artificial vision system at the edge.
科研通智能强力驱动
Strongly Powered by AbleSci AI