已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Task Space Compliant Control and Six-Dimensional Force Regulation Toward Automated Robotic Ultrasound Imaging

计算机科学 人工智能 笛卡尔坐标系 运动(物理) 理论(学习稳定性) 任务(项目管理) 运动学 控制理论(社会学) 计算机视觉 模拟 控制(管理) 数学 工程类 物理 机器学习 几何学 系统工程 经典力学
作者
Junchen Wang,Chunheng Lu,Yifei Lv,Siqin Yang,Mingbo Zhang,Yu Shen
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 3652-3663 被引量:6
标识
DOI:10.1109/tase.2023.3282974
摘要

Objective: We propose a general control framework for task space compliant motion and six-dimensional (6-D) force regulation towards automated robotic ultrasound (US) imaging. The framework endows a position-controlled robotic manipulator with the capability of accurate compliant motion in free space and accurate force control in motion-constrained environment. Methods: An intuitive six degree-of-freedom (6-DoF) admittance control model expressed in an arbitrary Cartesian body frame is mathematically derived with closed-form task space error mapping. Its practical implementation on widely-used collaborative manipulators is proposed to achieve full task space compliant behaviors and accurate 6-D force control. A hybrid control law is presented to achieve good motion accuracy in free space and improved coupled stability in motion-constrained environment. The coupled model of physical human-robot interaction is established and the reason for the improved coupled stability is analyzed through simulation. Results: Evaluation experiments on the proposed control framework were performed to show the effectiveness. The mean error of compliant trajectory following was less than 0.30 mm in free space. The mean relative force and moment control accuracy in three orthogonal directions was better than 0.5% and 0.8%, respectively. The improved coupled stability under the same model parameters was also confirmed by human-robot interaction experiments. Finally, an automated robotic US imaging experiment on a human volunteer in a real clinical scenario was carried out to show the potential application of our proposed framework. Conclusion: Experimental results have shown the advantages of the control framework, including satisfied force control accuracy, high accuracy of compliant motion, improved coupled stability, and system effectiveness on a human volunteer. Note to Practitioners —This paper was motivated by the increasing needs of automated ultrasound (US) scanning for both diagnostic and interventional purpose. Clinical sonographers suffer from repeated workload when performing diagnostic US imaging, which could benefit from automated robotic scanning. Robotic US imaging involves physical interaction between the robot end-effector (i.e., US transducer) and the human body. The dynamics of the interaction is regulated by the control law to guarantee the contact of the US transducer and the safety of the procedure. Most existing works have focused on regulating in-plane contact force in terms of the position without considering the compliance in other dimensions. However, it is not a trivial work to extend the positional compliance to six degree-of-freedom (6-DoF) compliance. As the prevalence of low-cost collaborative robotic arms in medical scenarios, how to perform 6-DoF compliant trajectory following and accurate six-dimensional (6-D) force control on these robotic arms becomes increasingly important. This paper gives a complete general solution to achieve 6-DoF compliant control and 6-D force regulation with accurate kinematics on a position-controlled robotic arm. A hybrid control law is proposed to switch the government of "instantaneous model" and "theoretical model" to achieve compliant motion accuracy in free space and improved coupled stability in motion-constrained environment. No expensive torque sensors and torque control interface are required. And no prior geometric knowledge about the scanning object is needed. We have demonstrated the application for robotic US imaging in a real clinical scenario.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
秋秋发布了新的文献求助10
4秒前
踏雪去哪儿了完成签到,获得积分10
5秒前
龅牙苏发布了新的文献求助10
6秒前
动听衬衫发布了新的文献求助10
8秒前
李月完成签到 ,获得积分10
8秒前
Cheng完成签到 ,获得积分10
9秒前
科研fw完成签到 ,获得积分10
10秒前
rui520完成签到 ,获得积分10
12秒前
鱼鱼余裕完成签到 ,获得积分10
13秒前
13秒前
wit完成签到,获得积分10
15秒前
挽晨完成签到 ,获得积分10
15秒前
顾矜应助1111采纳,获得10
16秒前
18秒前
小状元完成签到 ,获得积分10
18秒前
19秒前
19秒前
21秒前
www完成签到 ,获得积分10
22秒前
22秒前
Gavin完成签到 ,获得积分10
22秒前
wit发布了新的文献求助10
22秒前
kk完成签到,获得积分10
22秒前
子阅完成签到 ,获得积分10
23秒前
花花123发布了新的文献求助10
24秒前
何晋发布了新的文献求助10
25秒前
RR发布了新的文献求助10
26秒前
小蘑菇应助阿狸贱贱采纳,获得10
27秒前
Doc完成签到,获得积分10
27秒前
Landau发布了新的文献求助10
27秒前
搜集达人应助彪壮的元柏采纳,获得10
28秒前
Jasper应助花花123采纳,获得10
29秒前
星月完成签到 ,获得积分10
30秒前
耍酷的觅荷完成签到 ,获得积分10
31秒前
乐乐应助敲敲采纳,获得10
31秒前
长安完成签到 ,获得积分10
32秒前
顾矜应助zz采纳,获得10
32秒前
32秒前
万能图书馆应助Landau采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252991
求助须知:如何正确求助?哪些是违规求助? 4416534
关于积分的说明 13750009
捐赠科研通 4288755
什么是DOI,文献DOI怎么找? 2353041
邀请新用户注册赠送积分活动 1349815
关于科研通互助平台的介绍 1309493