Task Space Compliant Control and Six-Dimensional Force Regulation Toward Automated Robotic Ultrasound Imaging

计算机科学 人工智能 笛卡尔坐标系 运动(物理) 理论(学习稳定性) 任务(项目管理) 运动学 控制理论(社会学) 计算机视觉 模拟 控制(管理) 数学 工程类 物理 机器学习 几何学 经典力学 系统工程
作者
Junchen Wang,Chunheng Lu,Yifei Lv,Siqin Yang,Mingbo Zhang,Yu Shen
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 3652-3663 被引量:6
标识
DOI:10.1109/tase.2023.3282974
摘要

Objective: We propose a general control framework for task space compliant motion and six-dimensional (6-D) force regulation towards automated robotic ultrasound (US) imaging. The framework endows a position-controlled robotic manipulator with the capability of accurate compliant motion in free space and accurate force control in motion-constrained environment. Methods: An intuitive six degree-of-freedom (6-DoF) admittance control model expressed in an arbitrary Cartesian body frame is mathematically derived with closed-form task space error mapping. Its practical implementation on widely-used collaborative manipulators is proposed to achieve full task space compliant behaviors and accurate 6-D force control. A hybrid control law is presented to achieve good motion accuracy in free space and improved coupled stability in motion-constrained environment. The coupled model of physical human-robot interaction is established and the reason for the improved coupled stability is analyzed through simulation. Results: Evaluation experiments on the proposed control framework were performed to show the effectiveness. The mean error of compliant trajectory following was less than 0.30 mm in free space. The mean relative force and moment control accuracy in three orthogonal directions was better than 0.5% and 0.8%, respectively. The improved coupled stability under the same model parameters was also confirmed by human-robot interaction experiments. Finally, an automated robotic US imaging experiment on a human volunteer in a real clinical scenario was carried out to show the potential application of our proposed framework. Conclusion: Experimental results have shown the advantages of the control framework, including satisfied force control accuracy, high accuracy of compliant motion, improved coupled stability, and system effectiveness on a human volunteer. Note to Practitioners —This paper was motivated by the increasing needs of automated ultrasound (US) scanning for both diagnostic and interventional purpose. Clinical sonographers suffer from repeated workload when performing diagnostic US imaging, which could benefit from automated robotic scanning. Robotic US imaging involves physical interaction between the robot end-effector (i.e., US transducer) and the human body. The dynamics of the interaction is regulated by the control law to guarantee the contact of the US transducer and the safety of the procedure. Most existing works have focused on regulating in-plane contact force in terms of the position without considering the compliance in other dimensions. However, it is not a trivial work to extend the positional compliance to six degree-of-freedom (6-DoF) compliance. As the prevalence of low-cost collaborative robotic arms in medical scenarios, how to perform 6-DoF compliant trajectory following and accurate six-dimensional (6-D) force control on these robotic arms becomes increasingly important. This paper gives a complete general solution to achieve 6-DoF compliant control and 6-D force regulation with accurate kinematics on a position-controlled robotic arm. A hybrid control law is proposed to switch the government of "instantaneous model" and "theoretical model" to achieve compliant motion accuracy in free space and improved coupled stability in motion-constrained environment. No expensive torque sensors and torque control interface are required. And no prior geometric knowledge about the scanning object is needed. We have demonstrated the application for robotic US imaging in a real clinical scenario.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
was_3完成签到,获得积分10
1秒前
3秒前
8秒前
zxy完成签到 ,获得积分10
9秒前
陈_Ccc完成签到 ,获得积分10
13秒前
zhao完成签到,获得积分10
13秒前
17秒前
苗条丹南完成签到 ,获得积分10
20秒前
法外狂徒唐老鸭完成签到 ,获得积分10
20秒前
南宫士晋完成签到 ,获得积分10
20秒前
buerzi完成签到,获得积分10
21秒前
秦梦瑶瑶发布了新的文献求助10
21秒前
dayday完成签到,获得积分10
21秒前
一枝完成签到 ,获得积分10
24秒前
wzk完成签到,获得积分10
25秒前
25秒前
LaixS完成签到,获得积分10
27秒前
可爱蓝天完成签到,获得积分10
27秒前
执着千筹完成签到,获得积分10
29秒前
要笑cc完成签到,获得积分10
29秒前
宣宣宣0733完成签到,获得积分10
31秒前
猪猪hero发布了新的文献求助10
31秒前
包容的以彤完成签到 ,获得积分10
31秒前
ceeray23发布了新的文献求助20
33秒前
胡质斌完成签到,获得积分10
33秒前
完美世界应助秦梦瑶瑶采纳,获得10
34秒前
量子星尘发布了新的文献求助10
36秒前
btcat完成签到,获得积分10
38秒前
General完成签到 ,获得积分10
39秒前
iorpi完成签到,获得积分10
39秒前
北有云烟完成签到 ,获得积分10
44秒前
46秒前
danli完成签到 ,获得积分10
48秒前
符宇新发布了新的文献求助10
50秒前
大大彬完成签到 ,获得积分10
53秒前
Owen应助幽默艳采纳,获得10
53秒前
龚问萍完成签到 ,获得积分10
56秒前
77完成签到 ,获得积分10
56秒前
LYQ完成签到 ,获得积分10
57秒前
李健的小迷弟应助haochi采纳,获得10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008738
求助须知:如何正确求助?哪些是违规求助? 3548380
关于积分的说明 11298823
捐赠科研通 3283051
什么是DOI,文献DOI怎么找? 1810290
邀请新用户注册赠送积分活动 885976
科研通“疑难数据库(出版商)”最低求助积分说明 811218