Research on Rolling Bearing Fault Diagnosis Based on Digital Twin Data and Improved ConvNext

稳健性(进化) 计算机科学 方位(导航) 人工智能 数据挖掘 断层(地质) 学习迁移 机器学习 生物化学 化学 地震学 基因 地质学
作者
Chao Zhang,Feifan Qin,Wentao Zhao,Jianjun Li,Tongtong Liu
出处
期刊:Sensors [MDPI AG]
卷期号:23 (11): 5334-5334 被引量:8
标识
DOI:10.3390/s23115334
摘要

This article introduces a novel framework for diagnosing faults in rolling bearings. The framework combines digital twin data, transfer learning theory, and an enhanced ConvNext deep learning network model. Its purpose is to address the challenges posed by the limited actual fault data density and inadequate result accuracy in existing research on the detection of rolling bearing faults in rotating mechanical equipment. To begin with, the operational rolling bearing is represented in the digital realm through the utilization of a digital twin model. The simulation data produced by this twin model replace traditional experimental data, effectively creating a substantial volume of well-balanced simulated datasets. Next, improvements are made to the ConvNext network by incorporating an unparameterized attention module called the Similarity Attention Module (SimAM) and an efficient channel attention feature referred to as the Efficient Channel Attention Network (ECA). These enhancements serve to augment the network's capability for extracting features. Subsequently, the enhanced network model is trained using the source domain dataset. Simultaneously, the trained model is transferred to the target domain bearing using transfer learning techniques. This transfer learning process enables the accurate fault diagnosis of the main bearing to be achieved. Finally, the proposed method's feasibility is validated, and a comparative analysis is conducted in comparison with similar approaches. The comparative study demonstrates that the proposed method effectively addresses the issue of low mechanical equipment fault data density, leading to improved accuracy in fault detection and classification, along with a certain level of robustness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木森发布了新的文献求助10
刚刚
1秒前
刘志萍完成签到 ,获得积分10
1秒前
tRNA完成签到,获得积分10
3秒前
傻呵呵完成签到 ,获得积分20
4秒前
在水一方应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
5秒前
英姑应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
zxzxzx应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得30
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
Xuezi应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
一一应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
6秒前
Otter发布了新的文献求助100
6秒前
8秒前
star完成签到 ,获得积分10
9秒前
谢挽风完成签到,获得积分10
10秒前
橙啊程发布了新的文献求助10
12秒前
Diplogen发布了新的文献求助10
15秒前
kobiy完成签到 ,获得积分10
17秒前
lJH完成签到,获得积分10
19秒前
arniu2008完成签到,获得积分10
22秒前
26秒前
27秒前
张KT完成签到,获得积分10
28秒前
彭于晏应助coffee采纳,获得10
30秒前
栗子完成签到 ,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560435
求助须知:如何正确求助?哪些是违规求助? 4645604
关于积分的说明 14675724
捐赠科研通 4586775
什么是DOI,文献DOI怎么找? 2516534
邀请新用户注册赠送积分活动 1490145
关于科研通互助平台的介绍 1460989