Research on Rolling Bearing Fault Diagnosis Based on Digital Twin Data and Improved ConvNext

稳健性(进化) 计算机科学 方位(导航) 人工智能 数据挖掘 断层(地质) 学习迁移 机器学习 生物化学 基因 地质学 地震学 化学
作者
Chao Zhang,Feifan Qin,Wentao Zhao,Jianjun Li,Tongtong Liu
出处
期刊:Sensors [MDPI AG]
卷期号:23 (11): 5334-5334 被引量:8
标识
DOI:10.3390/s23115334
摘要

This article introduces a novel framework for diagnosing faults in rolling bearings. The framework combines digital twin data, transfer learning theory, and an enhanced ConvNext deep learning network model. Its purpose is to address the challenges posed by the limited actual fault data density and inadequate result accuracy in existing research on the detection of rolling bearing faults in rotating mechanical equipment. To begin with, the operational rolling bearing is represented in the digital realm through the utilization of a digital twin model. The simulation data produced by this twin model replace traditional experimental data, effectively creating a substantial volume of well-balanced simulated datasets. Next, improvements are made to the ConvNext network by incorporating an unparameterized attention module called the Similarity Attention Module (SimAM) and an efficient channel attention feature referred to as the Efficient Channel Attention Network (ECA). These enhancements serve to augment the network's capability for extracting features. Subsequently, the enhanced network model is trained using the source domain dataset. Simultaneously, the trained model is transferred to the target domain bearing using transfer learning techniques. This transfer learning process enables the accurate fault diagnosis of the main bearing to be achieved. Finally, the proposed method's feasibility is validated, and a comparative analysis is conducted in comparison with similar approaches. The comparative study demonstrates that the proposed method effectively addresses the issue of low mechanical equipment fault data density, leading to improved accuracy in fault detection and classification, along with a certain level of robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
翠翠完成签到,获得积分10
1秒前
1秒前
LSH970829完成签到,获得积分10
2秒前
Lyg完成签到,获得积分20
3秒前
坚强的樱发布了新的文献求助10
3秒前
baodingning完成签到,获得积分10
4秒前
4秒前
公茂源发布了新的文献求助30
4秒前
热爱完成签到,获得积分10
5秒前
6秒前
叫滚滚发布了新的文献求助10
7秒前
星瑆心完成签到,获得积分10
7秒前
啦啦啦啦啦完成签到,获得积分10
8秒前
Lyg发布了新的文献求助10
8秒前
Dksido完成签到,获得积分10
9秒前
兰博基尼奥完成签到,获得积分10
9秒前
热情芷荷发布了新的文献求助10
11秒前
random完成签到,获得积分10
12秒前
12秒前
果果瑞宁完成签到,获得积分10
12秒前
13秒前
机智小虾米完成签到,获得积分20
13秒前
goldenfleece完成签到,获得积分10
14秒前
科研通AI2S应助学者采纳,获得10
14秒前
小杨完成签到,获得积分10
15秒前
sutharsons应助科研通管家采纳,获得30
16秒前
16秒前
Ava应助科研通管家采纳,获得10
16秒前
慕青应助科研通管家采纳,获得10
16秒前
所所应助科研通管家采纳,获得10
16秒前
在水一方应助科研通管家采纳,获得10
16秒前
小蘑菇应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得30
16秒前
传奇3应助科研通管家采纳,获得10
16秒前
科目三应助科研通管家采纳,获得10
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
CipherSage应助科研通管家采纳,获得30
16秒前
SciGPT应助科研通管家采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808