Research on Rolling Bearing Fault Diagnosis Based on Digital Twin Data and Improved ConvNext

稳健性(进化) 计算机科学 方位(导航) 人工智能 数据挖掘 断层(地质) 学习迁移 机器学习 生物化学 基因 地质学 地震学 化学
作者
Chao Zhang,Feifan Qin,Wentao Zhao,Jianjun Li,Tongtong Liu
出处
期刊:Sensors [MDPI AG]
卷期号:23 (11): 5334-5334 被引量:8
标识
DOI:10.3390/s23115334
摘要

This article introduces a novel framework for diagnosing faults in rolling bearings. The framework combines digital twin data, transfer learning theory, and an enhanced ConvNext deep learning network model. Its purpose is to address the challenges posed by the limited actual fault data density and inadequate result accuracy in existing research on the detection of rolling bearing faults in rotating mechanical equipment. To begin with, the operational rolling bearing is represented in the digital realm through the utilization of a digital twin model. The simulation data produced by this twin model replace traditional experimental data, effectively creating a substantial volume of well-balanced simulated datasets. Next, improvements are made to the ConvNext network by incorporating an unparameterized attention module called the Similarity Attention Module (SimAM) and an efficient channel attention feature referred to as the Efficient Channel Attention Network (ECA). These enhancements serve to augment the network's capability for extracting features. Subsequently, the enhanced network model is trained using the source domain dataset. Simultaneously, the trained model is transferred to the target domain bearing using transfer learning techniques. This transfer learning process enables the accurate fault diagnosis of the main bearing to be achieved. Finally, the proposed method's feasibility is validated, and a comparative analysis is conducted in comparison with similar approaches. The comparative study demonstrates that the proposed method effectively addresses the issue of low mechanical equipment fault data density, leading to improved accuracy in fault detection and classification, along with a certain level of robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高大大雁发布了新的文献求助10
1秒前
2秒前
2秒前
迷人的Jack完成签到,获得积分20
3秒前
研友_VZG7GZ应助oneming采纳,获得10
3秒前
Akim应助ken采纳,获得10
4秒前
田様应助legna采纳,获得10
4秒前
5秒前
yufanhui应助坚强的严青采纳,获得10
6秒前
mingzhu发布了新的文献求助10
7秒前
7秒前
轻松如冬完成签到,获得积分10
8秒前
9秒前
peipei完成签到,获得积分10
10秒前
李爱国应助你帅你有理采纳,获得200
10秒前
SU完成签到,获得积分10
12秒前
13秒前
BareBear发布了新的文献求助10
13秒前
赘婿应助bb采纳,获得10
15秒前
16秒前
17秒前
大方的舞仙完成签到 ,获得积分10
17秒前
枳酒完成签到,获得积分10
17秒前
负责的流沙完成签到 ,获得积分10
17秒前
sdsd发布了新的文献求助10
17秒前
oneming发布了新的文献求助10
18秒前
可靠的纸飞机完成签到 ,获得积分10
18秒前
18秒前
顺利如冰完成签到,获得积分10
19秒前
15884134873完成签到,获得积分10
20秒前
Leslie发布了新的文献求助10
21秒前
小全完成签到,获得积分10
21秒前
医学生发布了新的文献求助10
21秒前
一只想做科研的狗完成签到,获得积分10
22秒前
orixero应助oneming采纳,获得10
24秒前
25秒前
25秒前
weijun完成签到,获得积分10
25秒前
科研通AI2S应助mingzhu采纳,获得10
27秒前
宇文老九完成签到,获得积分10
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135055
求助须知:如何正确求助?哪些是违规求助? 2786055
关于积分的说明 7774839
捐赠科研通 2441865
什么是DOI,文献DOI怎么找? 1298217
科研通“疑难数据库(出版商)”最低求助积分说明 625108
版权声明 600825