亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Integrating ICESat-2 altimetry and machine learning to estimate the seasonal water level and storage variations of national-scale lakes in China

季节性 环境科学 高度计 水循环 中国 蓄水 比例(比率) 水位 气候学 流域 构造盆地 自然地理学 遥感 地质学 地理 海洋学 生态学 生物 古生物学 考古 入口 地图学
作者
Lijuan Song,Chunqiao Song,Shuangxiao Luo,Tan Chen,Kai Liu,Yunlin Zhang,Linghong Ke
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:294: 113657-113657 被引量:7
标识
DOI:10.1016/j.rse.2023.113657
摘要

Lakes comprise the largest element of terrestrial surface liquid freshwater bodies, playing an indispensable part in the Earth's water cycle and alleviating floods and droughts. The seasonal variation of lake water level (LWLsv) and storage (LWSsv) reflects the periodic hydrologic fluctuations and related driving forces of the water balances at the basin scale. China, a vastly diverse country that descends from the "Roof of the World" to monsoonal coast zones, hosts a wide distribution of lakes with diverse hydro-climatological and topographic features. Most previous studies focused on monitoring long-term changes of lakes in China, while the seasonality (mostly regarding the lake area) of lake hydrologic dynamics was only investigated for typical lakes or local basins/zones due to the limited spatial coverage and temporal resolution of various observation data. Benefiting from the finer footprints and increased beams of ICESat-2 laser altimeter, we examined the seasonal variations of LWLsv of Chinese lakes (3473 lakes historically larger than 1 km2 during the 1980s–2010s) on a national scale from 2019 to 2021. Then, the machine learning algorithm termed the extreme gradient boosting tree was employed to model the LWLsv of the lakes that were not monitored by ICESat-2. We further quantized the national-scale LWSsv by combining the LWLsv estimates and lake area data. Results show that the mean LWLsv of the 1255 lakes observed by ICESat-2 during 2019–2021 is 0.44 ± 0.07 m. Among them, 1167 lakes have the LWLsv <1 m, and 12 lakes have the LWLsv exceeding 3 m. The accuracy evaluation indicates that the XGBoost model performs well in predicting LWLsv results for unobserved lakes, with the coefficient of determination of 0.76, the mean absolute error of 0.14 m, and the root mean square error of 0.03 m. Overall, the predicted LWLsv of unobserved lakes has a similar spatial pattern to that of the observed lakes. The LWSsv is estimated at 77.29 ± 6.87 Gt in total, but exhibits obvious spatial heterogeneity in China. The Middle and Lower Reaches of Yangtze River Basin and the endorheic Qiangtang Plateau Basin rank the first two contributors of the net LWSsv, which were respectively attributed to the most significant LWLsv changes and the largest lake group area. This national-scale quantification of the LWLsv and LWSsv helps advance our scientific understanding of the seasonal hydrologic behaviors for Chinese lakes in regulating the water cycle and providing a valuable reference for regional water resource management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哲别发布了新的文献求助10
5秒前
感动的一凤完成签到,获得积分10
11秒前
13秒前
CipherSage应助哲别采纳,获得10
17秒前
liuyingyun发布了新的文献求助10
19秒前
苏苏完成签到,获得积分10
25秒前
27秒前
研友_ZbP41L完成签到 ,获得积分10
31秒前
YifanWang应助科研通管家采纳,获得30
36秒前
完美世界应助科研通管家采纳,获得10
36秒前
YifanWang应助科研通管家采纳,获得30
37秒前
orixero应助科研通管家采纳,获得50
37秒前
SciGPT应助科研通管家采纳,获得30
37秒前
大傻春完成签到,获得积分10
48秒前
Rita发布了新的文献求助10
48秒前
philo发布了新的文献求助10
52秒前
今后应助超级雅霜采纳,获得10
56秒前
57秒前
超级雅霜完成签到,获得积分10
59秒前
joanna完成签到,获得积分10
1分钟前
哭泣秋蝶发布了新的文献求助10
1分钟前
Ze萍完成签到 ,获得积分10
1分钟前
怕黑行恶完成签到,获得积分10
1分钟前
1分钟前
1分钟前
循循完成签到,获得积分10
1分钟前
超级雅霜发布了新的文献求助10
1分钟前
洒脱完成签到,获得积分10
1分钟前
CipherSage应助韶纹采纳,获得10
1分钟前
1分钟前
十一完成签到 ,获得积分10
1分钟前
1分钟前
毛毛猫完成签到 ,获得积分10
1分钟前
1分钟前
强健的电源完成签到,获得积分10
1分钟前
Mottri完成签到 ,获得积分10
1分钟前
1分钟前
766465完成签到 ,获得积分10
1分钟前
小耿完成签到 ,获得积分10
2分钟前
斯文败类应助结实的虔纹采纳,获得10
2分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136993
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784040
捐赠科研通 2444012
什么是DOI,文献DOI怎么找? 1299609
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600989