Integrating ICESat-2 altimetry and machine learning to estimate the seasonal water level and storage variations of national-scale lakes in China

季节性 环境科学 高度计 水循环 中国 蓄水 比例(比率) 水位 气候学 流域 构造盆地 自然地理学 遥感 地质学 地理 海洋学 生态学 古生物学 地图学 考古 入口 生物
作者
Lijuan Song,Chunqiao Song,Shuangxiao Luo,Tan Chen,Kai Liu,Yunlin Zhang,Linghong Ke
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:294: 113657-113657 被引量:7
标识
DOI:10.1016/j.rse.2023.113657
摘要

Lakes comprise the largest element of terrestrial surface liquid freshwater bodies, playing an indispensable part in the Earth's water cycle and alleviating floods and droughts. The seasonal variation of lake water level (LWLsv) and storage (LWSsv) reflects the periodic hydrologic fluctuations and related driving forces of the water balances at the basin scale. China, a vastly diverse country that descends from the "Roof of the World" to monsoonal coast zones, hosts a wide distribution of lakes with diverse hydro-climatological and topographic features. Most previous studies focused on monitoring long-term changes of lakes in China, while the seasonality (mostly regarding the lake area) of lake hydrologic dynamics was only investigated for typical lakes or local basins/zones due to the limited spatial coverage and temporal resolution of various observation data. Benefiting from the finer footprints and increased beams of ICESat-2 laser altimeter, we examined the seasonal variations of LWLsv of Chinese lakes (3473 lakes historically larger than 1 km2 during the 1980s–2010s) on a national scale from 2019 to 2021. Then, the machine learning algorithm termed the extreme gradient boosting tree was employed to model the LWLsv of the lakes that were not monitored by ICESat-2. We further quantized the national-scale LWSsv by combining the LWLsv estimates and lake area data. Results show that the mean LWLsv of the 1255 lakes observed by ICESat-2 during 2019–2021 is 0.44 ± 0.07 m. Among them, 1167 lakes have the LWLsv <1 m, and 12 lakes have the LWLsv exceeding 3 m. The accuracy evaluation indicates that the XGBoost model performs well in predicting LWLsv results for unobserved lakes, with the coefficient of determination of 0.76, the mean absolute error of 0.14 m, and the root mean square error of 0.03 m. Overall, the predicted LWLsv of unobserved lakes has a similar spatial pattern to that of the observed lakes. The LWSsv is estimated at 77.29 ± 6.87 Gt in total, but exhibits obvious spatial heterogeneity in China. The Middle and Lower Reaches of Yangtze River Basin and the endorheic Qiangtang Plateau Basin rank the first two contributors of the net LWSsv, which were respectively attributed to the most significant LWLsv changes and the largest lake group area. This national-scale quantification of the LWLsv and LWSsv helps advance our scientific understanding of the seasonal hydrologic behaviors for Chinese lakes in regulating the water cycle and providing a valuable reference for regional water resource management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助庾稀采纳,获得10
刚刚
李龙玮发布了新的文献求助10
刚刚
刚刚
白云发布了新的文献求助10
1秒前
所所应助花满楼采纳,获得10
1秒前
1秒前
RR发布了新的文献求助10
2秒前
addi111完成签到,获得积分10
2秒前
禹笑珊完成签到,获得积分10
2秒前
tt发布了新的文献求助10
2秒前
内向大碗完成签到 ,获得积分10
2秒前
3秒前
3秒前
611发布了新的文献求助10
3秒前
喝喂辉完成签到,获得积分10
3秒前
3秒前
4秒前
慕青应助狂野的灵薇采纳,获得10
4秒前
裘含蕊发布了新的文献求助10
4秒前
牧绯完成签到,获得积分10
4秒前
阳光完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
kuai0Yu完成签到,获得积分10
6秒前
6秒前
6秒前
三木发布了新的文献求助10
6秒前
7秒前
wangqing发布了新的文献求助10
8秒前
李健应助李龙玮采纳,获得10
8秒前
8秒前
彭于彦祖应助ljys采纳,获得20
9秒前
9秒前
Ehgnix发布了新的文献求助10
9秒前
10秒前
tt完成签到,获得积分10
10秒前
哈哈哈完成签到,获得积分20
10秒前
温瞳发布了新的文献求助10
10秒前
团子发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Skin Tissue Engineering Methods and Protocols Book May 2025 300
Avialinguistics:The Study of Language for Aviation Purposes 270
Starvation biology of Plutella xylostella from a post-harvest crop sanitation perspective 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3688007
求助须知:如何正确求助?哪些是违规求助? 3237915
关于积分的说明 9834485
捐赠科研通 2950029
什么是DOI,文献DOI怎么找? 1617673
邀请新用户注册赠送积分活动 764478
科研通“疑难数据库(出版商)”最低求助积分说明 738564