沉积岩
全新世
地质学
生物地球化学循环
高原(数学)
冰期
构造盆地
流域
自然地理学
地球化学
海洋学
古生物学
生态学
地理
地图学
生物
数学
数学分析
作者
Yang Pu,Philip A. Meyers,Josef P. Werne,Hucai Zhang
标识
DOI:10.1016/j.scitotenv.2023.164641
摘要
The bulk nitrogen isotope composition of lacustrine sediments can be a useful proxy of past climatic and environmental changes. We previously reconstructed paleoenvironmental histories recorded in sediments of Lake Ximencuo and Lake Ngoring, both located on the eastern Qinghai-Tibetan Plateau (QTP), using a suite of biogeochemical paleoclimate proxies that included the sedimentary δ15Ntot values. We have revisited the different patterns of δ15Ntot variations in the two lakes and now conclude that their isotopic trends over the last millennium have been controlled by multiple factors. Regional temperature evidently is one potential factor affecting the sedimentary δ15Ntot values, indicating that the lake ecosystems respond to regional temperature changes on a sub-millennial timescale but in indirect and lake-specific ways. The processes involved in the sedimentary δ15Ntot changes appear to be more strongly influenced by the shapes of lake basins and associated hydrologic characteristics that control the origins of nitrogen-containing compounds in the lakes. To help understand the dynamics of nitrogen cycling and nitrogen isotope records in the QTP lakes, we identified two patterns - a terrestrial nitrogen-controlled pattern (TNCP) that is observed in deeper, steep-walled glacial-basin lakes and an aquatic nitrogen-controlled pattern (ANCP) that is observed in shallower, tectonic-basin lakes. We also considered the influences of the "amount effect" and the "temperature effect" on sedimentary δ15Ntot values and their possible operative mechanisms in these montane lakes. We postulate that both patterns are applicable to the QTP lakes, including both glacial and tectonic lakes, and probably to lakes in other regions that have also not experienced significant human disturbance.
科研通智能强力驱动
Strongly Powered by AbleSci AI