材料科学
聚合物
差示扫描量热法
化学工程
热重分析
高分子化学
电解质
锂电池
阳极
离子电导率
离子键合
复合材料
化学
有机化学
电极
离子
物理化学
工程类
物理
热力学
作者
Chih‐Hao Tsao,Chenyu Wang,Enrico Trevisanello,Felix H. Richter,Daniel Kuo,Jürgen Janek,Chien‐Hsiang Chang,Hsisheng Teng,Ping‐Lin Kuo
出处
期刊:ACS applied energy materials
[American Chemical Society]
日期:2023-05-23
卷期号:6 (11): 5662-5670
被引量:5
标识
DOI:10.1021/acsaem.2c03892
摘要
The conventional poly(vinylidene difluoride) (PVDF) polymer backbone in the lithium battery system shows poor compatibility with polyethylene glycol dimethyl ether (PEGDME) and results in the PVDF matrix separating from the PEGDME. It reacts with the lithium metal anode, forming an uneven passivation layer that causes battery capacity to decay. Here, poly(ethylene oxide) (PEO)-modified PVDF (mPVDF) was used as a polymer matrix to prepare freestanding quasi-solid-state polymer electrolytes with a PEGDME plasticizer (mQSPEs) to minimize battery deterioration. The PEO-mPVDF skeleton incorporated with an adequate amount of PEGDME reaches an ionic conductivity of 10–3 S cm–1 and simultaneously exhibits excellent compatibility with the lithium metal anode. The differential scanning calorimetry and thermogravimetric analysis show that the mPVDF backbone exhibits strong interactions with the polymer matrix and PEGDME, which has higher glass transition temperature (Tg) and decomposition temperature (Td) compared to the original PVDF backbone. Optical microscopy images show that the PEGDME stays in the mPVDF matrix without separation. The modified polymer matrix successfully prevents the degradation of PEGDME at the lithium metal anode, leading to long-term stability of mQSPEs with lithium metal.
科研通智能强力驱动
Strongly Powered by AbleSci AI