A backdoor attack against quantum neural networks with limited information

后门 对手 计算机科学 人工神经网络 编码(内存) 计算机安全 人工智能
作者
Chen-Yi Huang,Shibin Zhang
出处
期刊:Chinese Physics B [IOP Publishing]
卷期号:32 (10): 100306-100306
标识
DOI:10.1088/1674-1056/acd8ab
摘要

Backdoor attacks are emerging security threats to deep neural networks. In these attacks, adversaries manipulate the network by constructing training samples embedded with backdoor triggers. The backdoored model performs as expected on clean test samples but consistently misclassifies samples containing the backdoor trigger as a specific target label. While quantum neural networks (QNNs) have shown promise in surpassing their classical counterparts in certain machine learning tasks, they are also susceptible to backdoor attacks. However, current attacks on QNNs are constrained by the adversary’s understanding of the model structure and specific encoding methods. Given the diversity of encoding methods and model structures in QNNs, the effectiveness of such backdoor attacks remains uncertain. In this paper, we propose an algorithm that leverages dataset-based optimization to initiate backdoor attacks. A malicious adversary can embed backdoor triggers into a QNN model by poisoning only a small portion of the data. The victim QNN maintains high accuracy on clean test samples without the trigger but outputs the target label set by the adversary when predicting samples with the trigger. Furthermore, our proposed attack cannot be easily resisted by existing backdoor detection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuanchao发布了新的文献求助10
1秒前
利多卡因完成签到,获得积分10
2秒前
热心市民王先生完成签到,获得积分20
3秒前
幸运星发布了新的文献求助10
6秒前
hujin发布了新的文献求助50
7秒前
李健应助panpan采纳,获得10
8秒前
9秒前
聪明球球完成签到,获得积分20
10秒前
沈海完成签到,获得积分10
13秒前
13秒前
纯真忆秋发布了新的文献求助10
13秒前
14秒前
16秒前
Christine完成签到,获得积分10
16秒前
J_发布了新的文献求助10
16秒前
Lucas应助谦让新竹采纳,获得10
17秒前
Jasper应助兴奋的胡桃采纳,获得30
17秒前
18秒前
嘟嘟发布了新的文献求助10
18秒前
20秒前
20秒前
Hello应助axuan采纳,获得10
20秒前
顾矜应助千里采纳,获得10
20秒前
20秒前
vvvaee发布了新的文献求助10
25秒前
25秒前
22222发布了新的文献求助10
25秒前
26秒前
萨特完成签到,获得积分10
28秒前
回复活点复活完成签到,获得积分10
28秒前
29秒前
dandany完成签到,获得积分10
30秒前
30秒前
huajinoob发布了新的文献求助10
30秒前
31秒前
我是老大应助袁小圆采纳,获得10
32秒前
32秒前
32秒前
嗯哼应助科研通管家采纳,获得10
32秒前
可怜风雨应助科研通管家采纳,获得10
32秒前
高分求助中
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3217943
求助须知:如何正确求助?哪些是违规求助? 2867202
关于积分的说明 8155265
捐赠科研通 2534052
什么是DOI,文献DOI怎么找? 1366768
科研通“疑难数据库(出版商)”最低求助积分说明 644865
邀请新用户注册赠送积分活动 617880