亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Light Self-Gaussian-Attention Vision Transformer for Hyperspectral Image Classification

计算机科学 人工智能 高光谱成像 模式识别(心理学) 卷积神经网络 高斯分布 特征提取 计算 核(代数) 块(置换群论) 算法 数学 几何学 量子力学 组合数学 物理
作者
Chao Ma,Minjie Wan,Jian Wu,Xiaofang Kong,Ajun Shao,Fan Wang,Qian Chen,Guohua Gu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:49
标识
DOI:10.1109/tim.2023.3279922
摘要

In recent years, convolutional neural networks (CNNs) have been widely used in hyperspectral image (HSI) classification due to their exceptional performance in local feature extraction. However, due to the local join and weight sharing properties of the convolution kernel, CNNs have limitations in long-distance modeling, and deeper networks tend to increase computational costs. To address these issues, this paper proposes a vision Transformer (VIT) based on the light self-Gaussian-attention (LSGA) mechanism, which extracts global deep semantic features. Firstly, the hybrid spatial-spectral Tokenizer module extracts shallow spatial-spectral features and expands image patches to generate Tokens. Next, the light self-attention uses Q (Query), X (Origin input), and X instead of Q, K (Key), and V (Value) to reduce the computation and parameters. Furthermore, to avoid the lack of location information resulting in the aliasing of central and neighborhood features, we devise Gaussian absolute position bias to simulate HSI data distribution and make the attention weight closer to the central query block. Several experiments verify the effectiveness of the proposed method, which outperforms state-of-the-art methods on four datasets. Specifically, we observed a 0.62% accuracy improvement over A2S2K and a 0.11% improvement over SSFTT. In conclusion, the proposed LSGA-VIT method demonstrates promising results in HSI classification and shows potential in addressing the issues of location-aware long-distance modeling and computational cost. Our codes are available at https://github.com/machao132/LSGA-VIT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谦让山槐完成签到 ,获得积分10
7秒前
Criminology34应助ceeray23采纳,获得20
23秒前
顾矜应助越听初采纳,获得10
29秒前
41秒前
ceeray23发布了新的文献求助20
46秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
哈哈关注了科研通微信公众号
1分钟前
缥缈的觅风完成签到 ,获得积分10
2分钟前
boom完成签到 ,获得积分10
2分钟前
Zcl完成签到 ,获得积分10
2分钟前
Unicorn完成签到,获得积分10
3分钟前
哈哈发布了新的文献求助10
3分钟前
卡卡应助科研通管家采纳,获得10
3分钟前
Naming发布了新的文献求助10
3分钟前
4分钟前
深情安青应助Marciu33采纳,获得10
4分钟前
祖宛凝发布了新的文献求助10
4分钟前
renhuizhi发布了新的文献求助10
4分钟前
4分钟前
wanci应助Naming采纳,获得10
4分钟前
Forever完成签到 ,获得积分10
4分钟前
祖宛凝完成签到,获得积分10
4分钟前
木康薛完成签到,获得积分10
4分钟前
Yuki完成签到 ,获得积分10
4分钟前
木康薛发布了新的文献求助10
4分钟前
欣欣完成签到 ,获得积分10
4分钟前
4分钟前
传奇3应助碧蓝的冰绿采纳,获得10
4分钟前
renhuizhi完成签到,获得积分10
5分钟前
5分钟前
玛卡巴卡完成签到,获得积分10
5分钟前
shanyuyulai完成签到 ,获得积分10
5分钟前
6分钟前
华仔应助Sun采纳,获得10
6分钟前
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
kei完成签到 ,获得积分10
8分钟前
魔幻的芳完成签到,获得积分10
8分钟前
火星上的宝马完成签到,获得积分10
8分钟前
悲凉的忆南完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634809
求助须知:如何正确求助?哪些是违规求助? 4733916
关于积分的说明 14989314
捐赠科研通 4792506
什么是DOI,文献DOI怎么找? 2559636
邀请新用户注册赠送积分活动 1519967
关于科研通互助平台的介绍 1480053