Predicting the retention time of Synthetic Cannabinoids using a combinatorial QSAR approach

人工智能 计算机科学 试验装置 支持向量机 分析物 保留时间 数据集 分子描述符 机器学习 集合(抽象数据类型) 数据挖掘 数量结构-活动关系 模式识别(心理学) 化学 色谱法 程序设计语言
作者
Lina Wu,Xiao Fu,Xiaomin Luo,Keming Yun,Di Wen,Jiaman Lin,Shuo Yang,Tianle Li,Ping Xiang,Yan Shi
出处
期刊:Heliyon [Elsevier BV]
卷期号:9 (6): e16671-e16671
标识
DOI:10.1016/j.heliyon.2023.e16671
摘要

Abuse of Synthetic Cannabinoids (SCs) has become a serious threat to public health. Due to the various structural and chemical group modified by criminals, their detection is a major challenge in forensic toxicological identification. Therefore, rapid and efficient identification of SCs is important for forensic toxicology and drug bans. The prediction of an analyte's retention time in liquid chromatography is an important index for the qualitative analysis of compounds and can provide informatics solutions for the interpretation of chromatographic data.In this study, experimental data from high-resolution mass spectrometry (HRMS) are used to construct a regression model for predicting the retention time of SCs using machine learning methods. The prediction ability of the model is improved by adopting a strategy that combines different descriptors in different independent machine-learning methods.The best model was obtained with a method that combined Substructure Fingerprint Count and Finger printer features and the support vector regression (SVR) method, as it exhibited an R2 value of 0.81 for the validation set and 0.83 for the test set. In addition, 4 new SCs were predicted by the optimized model, with a prediction error within 3%.Our study provides a model that can predict the retention time of compounds and it can be used as a filter to reduce false-positive candidates when used in combination with LC-HRMS, especially in the absence of reference standards. This can improve the confidence of identification in non-targeted analysis and the reliability of identifying unknown substances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
共享精神应助收声采纳,获得10
2秒前
2秒前
负责乐安发布了新的文献求助10
2秒前
扶桑完成签到,获得积分10
2秒前
丘比特应助zzx采纳,获得10
3秒前
SHAO应助努力学习ing采纳,获得10
3秒前
大模型应助努力学习ing采纳,获得10
4秒前
4秒前
October发布了新的文献求助10
4秒前
5秒前
7秒前
8秒前
8秒前
8秒前
流水应助科研狗采纳,获得10
9秒前
9秒前
9秒前
LYi发布了新的文献求助10
10秒前
扁桃体完成签到,获得积分10
10秒前
彭于晏应助勤奋沛白采纳,获得10
10秒前
flos完成签到,获得积分10
11秒前
11秒前
1231发布了新的文献求助10
11秒前
12秒前
东风发布了新的文献求助80
12秒前
无辜曼冬完成签到,获得积分10
13秒前
13秒前
快乐难敌发布了新的文献求助10
13秒前
yucj发布了新的文献求助10
14秒前
扁桃体发布了新的文献求助10
14秒前
汤飞柏发布了新的文献求助10
14秒前
youngbin发布了新的文献求助10
14秒前
15秒前
16秒前
FashionBoy应助steel采纳,获得10
16秒前
brittany2068发布了新的文献求助10
16秒前
倾海发布了新的文献求助10
16秒前
16秒前
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954999
求助须知:如何正确求助?哪些是违规求助? 3501277
关于积分的说明 11102247
捐赠科研通 3231584
什么是DOI,文献DOI怎么找? 1786477
邀请新用户注册赠送积分活动 870090
科研通“疑难数据库(出版商)”最低求助积分说明 801798