Theoretical Insights into Single‐Atom Catalysts Supported on N‐Doped Defective Graphene for Fast Reaction Redox Kinetics in Lithium–Sulfur Batteries

催化作用 氧化还原 锂(药物) 石墨烯 Atom(片上系统) 过渡金属 动力学 硫黄 密度泛函理论 材料科学 分解 物理化学 化学 无机化学 结晶学 纳米技术 计算化学 物理 计算机科学 有机化学 嵌入式系统 冶金 内分泌学 医学 量子力学
作者
Tengfei Duan,Li Wang,Zhongyun Ma,Yong Pei
出处
期刊:Small [Wiley]
卷期号:19 (42) 被引量:16
标识
DOI:10.1002/smll.202303760
摘要

Single-atom catalysts are proven to be an effective strategy for suppressing shuttle effect at the source by accelerating the redox kinetics of intermediate polysulfides in lithium-sulfur (Li-S) batteries. However, only a few 3d transition metal single-atom catalysts (Ti, Fe, Co, Ni) are currently applied for sulfur reduction/oxidation reactions (SRR/SOR), which remains challenging for screening new efficient catalysts and understanding the relationship between structure-activity of catalysts. Herein, N-doped defective graphene (NG) supported 3d, 4d, and 5d transition metals are used as single-atom catalyst models to explore electrocatalytic SRR/SOR in Li-S batteries by using density functional theory calculations. The results show that M1 /NG (M1 = Ru, Rh, Ir, Os) exhibits lower free energy change of rate-determining step (ΔGLi2S∗)$( {\Delta {G}_{{\mathrm{Li}}_{\mathrm{2}}{{\mathrm{S}}}^{\mathrm{*}}\ }} )$ and Li2 S decomposition energy barrier, which significantly enhance the SRR and SOR activity compared to other single-atom catalysts. Furthermore, the study accurately predicts the ΔGLi2S∗$\Delta {G}_{{\mathrm{Li}}_{\mathrm{2}}{{\mathrm{S}}}^{\mathrm{*}}\ }$ by machine learning based on various descriptors and reveals the origin of the catalyst activity by analyzing the importance of the descriptors. This work provides great significance for understanding the relationships between the structure-activity of catalysts, and manifests that the employed machine learning approach is instructive for theoretical studies of single-atom catalytic reactions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zy发布了新的文献求助30
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
子车茗应助科研通管家采纳,获得20
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
子车茗应助科研通管家采纳,获得20
2秒前
子车茗应助科研通管家采纳,获得20
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得100
2秒前
3秒前
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得30
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
大龙哥886应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
3秒前
shhoing应助科研通管家采纳,获得10
3秒前
小魔女应助科研通管家采纳,获得10
3秒前
无极微光应助科研通管家采纳,获得20
3秒前
5秒前
qwq完成签到,获得积分10
5秒前
6秒前
海藻完成签到,获得积分10
7秒前
7秒前
8秒前
maomao发布了新的文献求助10
10秒前
onmyway发布了新的文献求助10
10秒前
田様应助longyk采纳,获得10
11秒前
可爱的函函应助G1997采纳,获得10
11秒前
pw完成签到,获得积分10
11秒前
Jack80发布了新的文献求助200
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560490
求助须知:如何正确求助?哪些是违规求助? 4645747
关于积分的说明 14676028
捐赠科研通 4586936
什么是DOI,文献DOI怎么找? 2516635
邀请新用户注册赠送积分活动 1490182
关于科研通互助平台的介绍 1461055