清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Theoretical Insights into Single‐Atom Catalysts Supported on N‐Doped Defective Graphene for Fast Reaction Redox Kinetics in Lithium–Sulfur Batteries

催化作用 氧化还原 锂(药物) 石墨烯 Atom(片上系统) 过渡金属 动力学 硫黄 密度泛函理论 材料科学 分解 物理化学 化学 无机化学 结晶学 纳米技术 计算化学 物理 计算机科学 有机化学 嵌入式系统 冶金 内分泌学 医学 量子力学
作者
Tengfei Duan,Li Wang,Zhongyun Ma,Yong Pei
出处
期刊:Small [Wiley]
卷期号:19 (42) 被引量:16
标识
DOI:10.1002/smll.202303760
摘要

Single-atom catalysts are proven to be an effective strategy for suppressing shuttle effect at the source by accelerating the redox kinetics of intermediate polysulfides in lithium-sulfur (Li-S) batteries. However, only a few 3d transition metal single-atom catalysts (Ti, Fe, Co, Ni) are currently applied for sulfur reduction/oxidation reactions (SRR/SOR), which remains challenging for screening new efficient catalysts and understanding the relationship between structure-activity of catalysts. Herein, N-doped defective graphene (NG) supported 3d, 4d, and 5d transition metals are used as single-atom catalyst models to explore electrocatalytic SRR/SOR in Li-S batteries by using density functional theory calculations. The results show that M1 /NG (M1 = Ru, Rh, Ir, Os) exhibits lower free energy change of rate-determining step (ΔGLi2S∗)$( {\Delta {G}_{{\mathrm{Li}}_{\mathrm{2}}{{\mathrm{S}}}^{\mathrm{*}}\ }} )$ and Li2 S decomposition energy barrier, which significantly enhance the SRR and SOR activity compared to other single-atom catalysts. Furthermore, the study accurately predicts the ΔGLi2S∗$\Delta {G}_{{\mathrm{Li}}_{\mathrm{2}}{{\mathrm{S}}}^{\mathrm{*}}\ }$ by machine learning based on various descriptors and reveals the origin of the catalyst activity by analyzing the importance of the descriptors. This work provides great significance for understanding the relationships between the structure-activity of catalysts, and manifests that the employed machine learning approach is instructive for theoretical studies of single-atom catalytic reactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
馆长举报英吉利25求助涉嫌违规
35秒前
馆长举报四月求助涉嫌违规
1分钟前
1分钟前
1分钟前
顺利的雁梅完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
2分钟前
2分钟前
两个榴莲完成签到,获得积分0
2分钟前
2分钟前
RLLLLLLL完成签到 ,获得积分10
3分钟前
3分钟前
yangxi发布了新的文献求助10
3分钟前
研友_VZG7GZ应助yangxi采纳,获得10
3分钟前
yangxi完成签到,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
BinBlues完成签到,获得积分10
4分钟前
4分钟前
4分钟前
vicky完成签到 ,获得积分10
5分钟前
冷傲半邪完成签到,获得积分10
5分钟前
5分钟前
nuliguan完成签到 ,获得积分10
5分钟前
5分钟前
激动的似狮完成签到,获得积分10
5分钟前
6分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
zpc猪猪完成签到,获得积分10
6分钟前
6分钟前
fabius0351完成签到 ,获得积分10
6分钟前
如歌完成签到,获得积分10
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596449
求助须知:如何正确求助?哪些是违规求助? 4008332
关于积分的说明 12409129
捐赠科研通 3687356
什么是DOI,文献DOI怎么找? 2032344
邀请新用户注册赠送积分活动 1065591
科研通“疑难数据库(出版商)”最低求助积分说明 950877