TITE‐gBOIN‐ET: Time‐to‐event generalized Bayesian optimal interval design to accelerate dose‐finding accounting for ordinal graded efficacy and toxicity outcomes

医学 临床试验 置信区间 最大耐受剂量 毒性 贝叶斯概率 肿瘤科 内科学 统计 数学
作者
Kazuhisa Takeda,Yusuke Yamaguchi,Masataka Taguri,Satoshi Morita
出处
期刊:Biometrical Journal [Wiley]
卷期号:65 (7) 被引量:1
标识
DOI:10.1002/bimj.202200265
摘要

One of the primary objectives of an oncology dose-finding trial for novel therapies, such as molecular-targeted agents and immune-oncology therapies, is to identify an optimal dose (OD) that is tolerable and therapeutically beneficial for subjects in subsequent clinical trials. These new therapeutic agents appear more likely to induce multiple low or moderate-grade toxicities than dose-limiting toxicities. Besides, for efficacy, evaluating the overall response and long-term stable disease in solid tumors and considering the difference between complete remission and partial remission in lymphoma are preferable. It is also essential to accelerate early-stage trials to shorten the entire period of drug development. However, it is often challenging to make real-time adaptive decisions due to late-onset outcomes, fast accrual rates, and differences in outcome evaluation periods for efficacy and toxicity. To solve the issues, we propose a time-to-event generalized Bayesian optimal interval design to accelerate dose finding, accounting for efficacy and toxicity grades. The new design named "TITE-gBOIN-ET" design is model-assisted and straightforward to implement in actual oncology dose-finding trials. Simulation studies show that the TITE-gBOIN-ET design significantly shortens the trial duration compared with the designs without sequential enrollment while having comparable or higher performance in the percentage of correct OD selection and the average number of patients allocated to the ODs across various realistic settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浪麻麻完成签到 ,获得积分10
2秒前
包容的剑完成签到 ,获得积分10
6秒前
等待的大炮完成签到,获得积分10
6秒前
注水萝卜完成签到 ,获得积分10
8秒前
Chem34完成签到,获得积分10
16秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
hhh2018687完成签到,获得积分10
18秒前
18秒前
19秒前
19秒前
19秒前
19秒前
20秒前
20秒前
20秒前
20秒前
20秒前
20秒前
20秒前
嘒彼小星完成签到 ,获得积分10
20秒前
20秒前
21秒前
21秒前
21秒前
21秒前
22秒前
ri_290完成签到,获得积分10
22秒前
23秒前
nsc发布了新的文献求助30
25秒前
nsc发布了新的文献求助10
25秒前
nsc发布了新的文献求助10
25秒前
nsc发布了新的文献求助10
25秒前
nsc发布了新的文献求助10
25秒前
nsc发布了新的文献求助10
25秒前
nsc发布了新的文献求助10
25秒前
nsc发布了新的文献求助10
25秒前
nsc发布了新的文献求助10
25秒前
nsc发布了新的文献求助10
25秒前
nsc发布了新的文献求助10
25秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038039
求助须知:如何正确求助?哪些是违规求助? 3575756
关于积分的说明 11373782
捐赠科研通 3305574
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022