Research and Application of Safe Reinforcement Learning in Power System

强化学习 计算机科学 钢筋 稳健性(进化) 人工智能 电力系统 领域(数学) 学习分类器系统 风险分析(工程) 机器学习 功率(物理) 工程类 纯数学 化学 物理 基因 医学 结构工程 量子力学 生物化学 数学
作者
Jian Li,Xinying Wang,Sheng Chen,Dong Yan
标识
DOI:10.1109/acpee56931.2023.10135995
摘要

Agent exploration of reinforcement learning is a necessary way for reinforcement learning algorithms to obtain information. In order to obtain more exploratory information, some deep reinforcement learning algorithms even increase the exploration of agents. Reinforcement learning has been successfully applied in many intelligent control fields, however unlimited exploration may bring disastrous consequences to agents, there are still many concerns that need attention in the application of real world, one of which is the safety issue. The safe reinforcement learning approximately enforces the constraint conditions in each policy update, thus further improving the security and robustness of intelligent algorithm. Furthermore, according to the particularity of electric energy production, transmission and consumption, power system operation needs to meet the requirements of safety, stability and efficiency. This paper summarizes the theory and characteristics of safe reinforcement learning, and then discusses the application of safe reinforcement learning in power system. Finally, we propose a prospect for the challenging problems of safe reinforcement learning in power field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助朽木采纳,获得10
刚刚
刚刚
shelter完成签到 ,获得积分10
刚刚
JosephLee发布了新的文献求助30
刚刚
chenchen978发布了新的文献求助20
1秒前
领导范儿应助nhscyhy采纳,获得10
2秒前
2秒前
饕餮发布了新的文献求助10
2秒前
勤恳的仰发布了新的文献求助30
4秒前
灰灰发布了新的文献求助10
4秒前
手打鱼丸发布了新的文献求助10
4秒前
唐诗维发布了新的文献求助10
4秒前
5秒前
anheshu完成签到,获得积分10
5秒前
6秒前
7秒前
坚果儿完成签到,获得积分10
7秒前
尽快看看发布了新的文献求助10
7秒前
小合完成签到,获得积分20
7秒前
bkagyin应助从容冰夏采纳,获得10
7秒前
MITNO1完成签到,获得积分10
7秒前
晖晖shining完成签到,获得积分10
8秒前
LCC发布了新的文献求助20
8秒前
朽木发布了新的文献求助10
10秒前
xue关闭了xue文献求助
10秒前
FLORA完成签到,获得积分20
10秒前
11秒前
JosephLee完成签到,获得积分10
11秒前
巨星不吃辣完成签到,获得积分10
11秒前
岳岳岳完成签到 ,获得积分10
11秒前
nhscyhy完成签到,获得积分10
12秒前
455发布了新的文献求助10
12秒前
天选完成签到 ,获得积分10
12秒前
科研通AI2S应助yan采纳,获得10
12秒前
sibo完成签到,获得积分10
12秒前
12秒前
万幸鹿发布了新的文献求助10
12秒前
13秒前
JerryZ发布了新的文献求助10
13秒前
哈哈哈哈发布了新的文献求助10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016787
求助须知:如何正确求助?哪些是违规求助? 3556966
关于积分的说明 11323317
捐赠科研通 3289698
什么是DOI,文献DOI怎么找? 1812525
邀请新用户注册赠送积分活动 888139
科研通“疑难数据库(出版商)”最低求助积分说明 812121