已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Leveraging complexity frameworks to refine theories of engagement: Advancing self‐regulated learning in the age of artificial intelligence

自主学习 心理干预 干预(咨询) 心理学 学生参与度 数学教育 医学教育 医学 精神科
作者
Jonathan C. Hilpert,Jeffrey A. Greene,Matthew L. Bernacki
出处
期刊:British Journal of Educational Technology [Wiley]
卷期号:54 (5): 1204-1221 被引量:10
标识
DOI:10.1111/bjet.13340
摘要

Abstract Capturing evidence for dynamic changes in self‐regulated learning (SRL) behaviours resulting from interventions is challenging for researchers. In the current study, we identified students who were likely to do poorly in a biology course and those who were likely to do well. Then, we randomly assigned a portion of the students predicted to perform poorly to a science of learning to learn intervention where they were taught SRL study strategies. Learning outcome and log data (257 K events) were collected from n = 226 students. We used a complex systems framework to model the differences in SRL including the amount, interrelatedness, density and regularity of engagement captured in digital trace data (ie, logs). Differences were compared between students who were predicted to (1) perform poorly (control, n = 48), (2) perform poorly and received intervention (treatment, n = 95) and (3) perform well (not flagged, n = 83). Results indicated that the regularity of students' engagement was predictive of course grade, and that the intervention group exhibited increased regularity in engagement over the control group immediately after the intervention and maintained that increase over the course of the semester. We discuss the implications of these findings in relation to the future of artificial intelligence and potential uses for monitoring student learning in online environments. Practitioner notes What is already known about this topic Self‐regulated learning (SRL) knowledge and skills are strong predictors of postsecondary STEM student success. SRL is a dynamic, temporal process that leads to purposeful student engagement. Methods and metrics for measuring dynamic SRL behaviours in learning contexts are needed. What this paper adds A Markov process for measuring dynamic SRL processes using log data. Evidence that dynamic, interaction‐dominant aspects of SRL predict student achievement. Evidence that SRL processes can be meaningfully impacted through educational intervention. Implications for theory and practice Complexity approaches inform theory and measurement of dynamic SRL processes. Static representations of dynamic SRL processes are promising learning analytics metrics. Engineered features of LMS usage are valuable contributions to AI models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋秋发布了新的文献求助10
1秒前
踏雪去哪儿了完成签到,获得积分10
2秒前
龅牙苏发布了新的文献求助10
3秒前
动听衬衫发布了新的文献求助10
5秒前
李月完成签到 ,获得积分10
5秒前
Cheng完成签到 ,获得积分10
6秒前
科研fw完成签到 ,获得积分10
7秒前
rui520完成签到 ,获得积分10
9秒前
鱼鱼余裕完成签到 ,获得积分10
10秒前
10秒前
wit完成签到,获得积分10
12秒前
挽晨完成签到 ,获得积分10
12秒前
顾矜应助1111采纳,获得10
13秒前
15秒前
小状元完成签到 ,获得积分10
15秒前
16秒前
16秒前
18秒前
www完成签到 ,获得积分10
19秒前
19秒前
Gavin完成签到 ,获得积分10
19秒前
wit发布了新的文献求助10
19秒前
kk完成签到,获得积分10
19秒前
子阅完成签到 ,获得积分10
20秒前
花花123发布了新的文献求助10
21秒前
何晋发布了新的文献求助10
22秒前
RR发布了新的文献求助10
23秒前
小蘑菇应助阿狸贱贱采纳,获得10
24秒前
Doc完成签到,获得积分10
24秒前
Landau发布了新的文献求助10
24秒前
搜集达人应助彪壮的元柏采纳,获得10
25秒前
Jasper应助花花123采纳,获得10
26秒前
星月完成签到 ,获得积分10
27秒前
耍酷的觅荷完成签到 ,获得积分10
28秒前
乐乐应助敲敲采纳,获得10
28秒前
长安完成签到 ,获得积分10
29秒前
顾矜应助zz采纳,获得10
29秒前
29秒前
万能图书馆应助Landau采纳,获得10
29秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252991
求助须知:如何正确求助?哪些是违规求助? 4416534
关于积分的说明 13750009
捐赠科研通 4288755
什么是DOI,文献DOI怎么找? 2353041
邀请新用户注册赠送积分活动 1349815
关于科研通互助平台的介绍 1309493