Leveraging complexity frameworks to refine theories of engagement: Advancing self‐regulated learning in the age of artificial intelligence

自主学习 心理干预 干预(咨询) 心理学 学生参与度 数学教育 医学教育 医学 精神科
作者
Jonathan C. Hilpert,Jeffrey A. Greene,Matthew L. Bernacki
出处
期刊:British Journal of Educational Technology [Wiley]
卷期号:54 (5): 1204-1221 被引量:10
标识
DOI:10.1111/bjet.13340
摘要

Abstract Capturing evidence for dynamic changes in self‐regulated learning (SRL) behaviours resulting from interventions is challenging for researchers. In the current study, we identified students who were likely to do poorly in a biology course and those who were likely to do well. Then, we randomly assigned a portion of the students predicted to perform poorly to a science of learning to learn intervention where they were taught SRL study strategies. Learning outcome and log data (257 K events) were collected from n = 226 students. We used a complex systems framework to model the differences in SRL including the amount, interrelatedness, density and regularity of engagement captured in digital trace data (ie, logs). Differences were compared between students who were predicted to (1) perform poorly (control, n = 48), (2) perform poorly and received intervention (treatment, n = 95) and (3) perform well (not flagged, n = 83). Results indicated that the regularity of students' engagement was predictive of course grade, and that the intervention group exhibited increased regularity in engagement over the control group immediately after the intervention and maintained that increase over the course of the semester. We discuss the implications of these findings in relation to the future of artificial intelligence and potential uses for monitoring student learning in online environments. Practitioner notes What is already known about this topic Self‐regulated learning (SRL) knowledge and skills are strong predictors of postsecondary STEM student success. SRL is a dynamic, temporal process that leads to purposeful student engagement. Methods and metrics for measuring dynamic SRL behaviours in learning contexts are needed. What this paper adds A Markov process for measuring dynamic SRL processes using log data. Evidence that dynamic, interaction‐dominant aspects of SRL predict student achievement. Evidence that SRL processes can be meaningfully impacted through educational intervention. Implications for theory and practice Complexity approaches inform theory and measurement of dynamic SRL processes. Static representations of dynamic SRL processes are promising learning analytics metrics. Engineered features of LMS usage are valuable contributions to AI models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷静的冷珍完成签到,获得积分10
刚刚
甜兰儿完成签到,获得积分10
刚刚
稚生w发布了新的文献求助10
1秒前
zz完成签到,获得积分10
1秒前
想吃螺蛳粉完成签到,获得积分10
1秒前
582697438发布了新的文献求助10
1秒前
娇气的涵柏完成签到,获得积分20
1秒前
科研发布了新的文献求助10
1秒前
yyy0202关注了科研通微信公众号
2秒前
jinxixi完成签到,获得积分10
2秒前
大模型应助缥缈的凝丹采纳,获得10
2秒前
登登灯灯发布了新的文献求助20
3秒前
微瑕发布了新的文献求助10
3秒前
老雪半糖加冰完成签到,获得积分10
3秒前
钟小熊完成签到,获得积分10
3秒前
3秒前
脑洞疼应助劣根采纳,获得10
4秒前
4秒前
5秒前
YESKY完成签到,获得积分10
5秒前
5秒前
榴莲姑娘完成签到 ,获得积分10
6秒前
6秒前
荀连虎完成签到,获得积分20
6秒前
故事的小红花完成签到,获得积分10
6秒前
微瑕完成签到,获得积分10
6秒前
Ted完成签到,获得积分10
6秒前
不倦应助JUDY采纳,获得10
7秒前
Lillian发布了新的文献求助10
7秒前
7秒前
尊敬的诗兰关注了科研通微信公众号
7秒前
HanGuilin完成签到,获得积分10
7秒前
科研完成签到,获得积分20
7秒前
7秒前
菲菲儿发布了新的文献求助20
7秒前
8秒前
不倦应助wuran采纳,获得10
8秒前
在水一方应助丽丽采纳,获得10
8秒前
8秒前
元谷雪发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665264
求助须知:如何正确求助?哪些是违规求助? 4875562
关于积分的说明 15112548
捐赠科研通 4824343
什么是DOI,文献DOI怎么找? 2582710
邀请新用户注册赠送积分活动 1536677
关于科研通互助平台的介绍 1495284