Leveraging complexity frameworks to refine theories of engagement: Advancing self‐regulated learning in the age of artificial intelligence

自主学习 心理干预 干预(咨询) 心理学 学生参与度 数学教育 医学教育 医学 精神科
作者
Jonathan C. Hilpert,Jeffrey A. Greene,Matthew L. Bernacki
出处
期刊:British Journal of Educational Technology [Wiley]
卷期号:54 (5): 1204-1221 被引量:10
标识
DOI:10.1111/bjet.13340
摘要

Abstract Capturing evidence for dynamic changes in self‐regulated learning (SRL) behaviours resulting from interventions is challenging for researchers. In the current study, we identified students who were likely to do poorly in a biology course and those who were likely to do well. Then, we randomly assigned a portion of the students predicted to perform poorly to a science of learning to learn intervention where they were taught SRL study strategies. Learning outcome and log data (257 K events) were collected from n = 226 students. We used a complex systems framework to model the differences in SRL including the amount, interrelatedness, density and regularity of engagement captured in digital trace data (ie, logs). Differences were compared between students who were predicted to (1) perform poorly (control, n = 48), (2) perform poorly and received intervention (treatment, n = 95) and (3) perform well (not flagged, n = 83). Results indicated that the regularity of students' engagement was predictive of course grade, and that the intervention group exhibited increased regularity in engagement over the control group immediately after the intervention and maintained that increase over the course of the semester. We discuss the implications of these findings in relation to the future of artificial intelligence and potential uses for monitoring student learning in online environments. Practitioner notes What is already known about this topic Self‐regulated learning (SRL) knowledge and skills are strong predictors of postsecondary STEM student success. SRL is a dynamic, temporal process that leads to purposeful student engagement. Methods and metrics for measuring dynamic SRL behaviours in learning contexts are needed. What this paper adds A Markov process for measuring dynamic SRL processes using log data. Evidence that dynamic, interaction‐dominant aspects of SRL predict student achievement. Evidence that SRL processes can be meaningfully impacted through educational intervention. Implications for theory and practice Complexity approaches inform theory and measurement of dynamic SRL processes. Static representations of dynamic SRL processes are promising learning analytics metrics. Engineered features of LMS usage are valuable contributions to AI models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
舒适静丹发布了新的文献求助10
1秒前
研友_pLw6o8发布了新的文献求助10
2秒前
3秒前
4秒前
Owen应助程意善采纳,获得10
5秒前
puutteita发布了新的文献求助10
5秒前
安南应助qia采纳,获得10
6秒前
6秒前
科研小白发布了新的文献求助10
7秒前
8秒前
只谈风月举报Qiqi求助涉嫌违规
8秒前
无花果应助王艺霖采纳,获得10
9秒前
杨方莉关注了科研通微信公众号
9秒前
10秒前
11秒前
11秒前
藿藿完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
火星上曼冬完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助150
13秒前
周周完成签到 ,获得积分10
13秒前
盼芙发布了新的文献求助10
14秒前
大个应助舒适静丹采纳,获得10
14秒前
Zhang完成签到 ,获得积分10
15秒前
鱼七完成签到,获得积分10
15秒前
16秒前
仁爱的晓刚完成签到,获得积分20
16秒前
16秒前
熹微发布了新的文献求助10
17秒前
18秒前
18秒前
18秒前
简单的书翠完成签到,获得积分10
19秒前
爆米花应助科研通管家采纳,获得10
19秒前
SciGPT应助科研通管家采纳,获得10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4924906
求助须知:如何正确求助?哪些是违规求助? 4195065
关于积分的说明 13030178
捐赠科研通 3966775
什么是DOI,文献DOI怎么找? 2174275
邀请新用户注册赠送积分活动 1191665
关于科研通互助平台的介绍 1101154