Leveraging complexity frameworks to refine theories of engagement: Advancing self‐regulated learning in the age of artificial intelligence

自主学习 心理干预 干预(咨询) 心理学 学生参与度 数学教育 医学教育 医学 精神科
作者
Jonathan C. Hilpert,Jeffrey A. Greene,Matthew L. Bernacki
出处
期刊:British Journal of Educational Technology [Wiley]
卷期号:54 (5): 1204-1221 被引量:10
标识
DOI:10.1111/bjet.13340
摘要

Abstract Capturing evidence for dynamic changes in self‐regulated learning (SRL) behaviours resulting from interventions is challenging for researchers. In the current study, we identified students who were likely to do poorly in a biology course and those who were likely to do well. Then, we randomly assigned a portion of the students predicted to perform poorly to a science of learning to learn intervention where they were taught SRL study strategies. Learning outcome and log data (257 K events) were collected from n = 226 students. We used a complex systems framework to model the differences in SRL including the amount, interrelatedness, density and regularity of engagement captured in digital trace data (ie, logs). Differences were compared between students who were predicted to (1) perform poorly (control, n = 48), (2) perform poorly and received intervention (treatment, n = 95) and (3) perform well (not flagged, n = 83). Results indicated that the regularity of students' engagement was predictive of course grade, and that the intervention group exhibited increased regularity in engagement over the control group immediately after the intervention and maintained that increase over the course of the semester. We discuss the implications of these findings in relation to the future of artificial intelligence and potential uses for monitoring student learning in online environments. Practitioner notes What is already known about this topic Self‐regulated learning (SRL) knowledge and skills are strong predictors of postsecondary STEM student success. SRL is a dynamic, temporal process that leads to purposeful student engagement. Methods and metrics for measuring dynamic SRL behaviours in learning contexts are needed. What this paper adds A Markov process for measuring dynamic SRL processes using log data. Evidence that dynamic, interaction‐dominant aspects of SRL predict student achievement. Evidence that SRL processes can be meaningfully impacted through educational intervention. Implications for theory and practice Complexity approaches inform theory and measurement of dynamic SRL processes. Static representations of dynamic SRL processes are promising learning analytics metrics. Engineered features of LMS usage are valuable contributions to AI models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ZH发布了新的文献求助10
1秒前
开心千青发布了新的文献求助10
1秒前
baymin完成签到 ,获得积分10
2秒前
开放的秋玲完成签到,获得积分10
3秒前
3秒前
4秒前
打打应助深情的牛排采纳,获得10
4秒前
li发布了新的文献求助10
5秒前
李健的小迷弟应助Camellia采纳,获得10
5秒前
5秒前
NexusExplorer应助fafafa采纳,获得10
6秒前
8秒前
8秒前
davedavedave完成签到 ,获得积分10
8秒前
Tako发布了新的文献求助10
8秒前
香蕉水云完成签到 ,获得积分10
8秒前
8秒前
欣慰的曼波完成签到,获得积分10
9秒前
和平港湾发布了新的文献求助10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
11秒前
蝴蝶发布了新的文献求助10
12秒前
尊敬的灰狼完成签到,获得积分10
12秒前
12秒前
安详的黎昕完成签到,获得积分10
12秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
科目三应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
13秒前
morena应助科研通管家采纳,获得30
13秒前
科目三应助科研通管家采纳,获得10
13秒前
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5745613
求助须知:如何正确求助?哪些是违规求助? 5427464
关于积分的说明 15353580
捐赠科研通 4885538
什么是DOI,文献DOI怎么找? 2626776
邀请新用户注册赠送积分活动 1575347
关于科研通互助平台的介绍 1532064