亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Leveraging complexity frameworks to refine theories of engagement: Advancing self‐regulated learning in the age of artificial intelligence

自主学习 心理干预 干预(咨询) 心理学 学生参与度 数学教育 医学教育 医学 精神科
作者
Jonathan C. Hilpert,Jeffrey A. Greene,Matthew L. Bernacki
出处
期刊:British Journal of Educational Technology [Wiley]
卷期号:54 (5): 1204-1221 被引量:10
标识
DOI:10.1111/bjet.13340
摘要

Abstract Capturing evidence for dynamic changes in self‐regulated learning (SRL) behaviours resulting from interventions is challenging for researchers. In the current study, we identified students who were likely to do poorly in a biology course and those who were likely to do well. Then, we randomly assigned a portion of the students predicted to perform poorly to a science of learning to learn intervention where they were taught SRL study strategies. Learning outcome and log data (257 K events) were collected from n = 226 students. We used a complex systems framework to model the differences in SRL including the amount, interrelatedness, density and regularity of engagement captured in digital trace data (ie, logs). Differences were compared between students who were predicted to (1) perform poorly (control, n = 48), (2) perform poorly and received intervention (treatment, n = 95) and (3) perform well (not flagged, n = 83). Results indicated that the regularity of students' engagement was predictive of course grade, and that the intervention group exhibited increased regularity in engagement over the control group immediately after the intervention and maintained that increase over the course of the semester. We discuss the implications of these findings in relation to the future of artificial intelligence and potential uses for monitoring student learning in online environments. Practitioner notes What is already known about this topic Self‐regulated learning (SRL) knowledge and skills are strong predictors of postsecondary STEM student success. SRL is a dynamic, temporal process that leads to purposeful student engagement. Methods and metrics for measuring dynamic SRL behaviours in learning contexts are needed. What this paper adds A Markov process for measuring dynamic SRL processes using log data. Evidence that dynamic, interaction‐dominant aspects of SRL predict student achievement. Evidence that SRL processes can be meaningfully impacted through educational intervention. Implications for theory and practice Complexity approaches inform theory and measurement of dynamic SRL processes. Static representations of dynamic SRL processes are promising learning analytics metrics. Engineered features of LMS usage are valuable contributions to AI models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
10秒前
zzzsh发布了新的文献求助10
17秒前
19秒前
研友_X894JZ完成签到 ,获得积分10
24秒前
隐形曼青应助千堆雪claris采纳,获得10
29秒前
30秒前
脑洞疼应助要减肥的婷冉采纳,获得10
40秒前
JamesPei应助jacs111采纳,获得10
44秒前
44秒前
50秒前
53秒前
53秒前
55秒前
56秒前
qiu发布了新的文献求助10
57秒前
jacs111发布了新的文献求助10
57秒前
茶叶蛋发布了新的文献求助10
1分钟前
1分钟前
1分钟前
qiu完成签到,获得积分10
1分钟前
千堆雪claris完成签到,获得积分10
1分钟前
拼搏萝发布了新的文献求助20
1分钟前
1分钟前
1分钟前
ding应助茶叶蛋采纳,获得30
1分钟前
1分钟前
玄之又玄完成签到,获得积分10
1分钟前
1分钟前
cuddly完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
茶叶蛋发布了新的文献求助30
2分钟前
美罗培南完成签到,获得积分10
2分钟前
茶叶蛋完成签到,获得积分10
2分钟前
Aha完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
顾矜应助要减肥的婷冉采纳,获得10
2分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965659
求助须知:如何正确求助?哪些是违规求助? 3510896
关于积分的说明 11155538
捐赠科研通 3245353
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874161
科研通“疑难数据库(出版商)”最低求助积分说明 804214