SMRGAT: A traditional Chinese herb recommendation model based on a multi-graph residual attention network and semantic knowledge fusion

中草药 药方 召回 中医药 人工智能 草本植物 计算机科学 医学 传统医学 自然语言处理 情报检索 替代医学 心理学 草药 认知心理学 病理 药理学
作者
Xiaoyan Yang,Changsong Ding
出处
期刊:Journal of Ethnopharmacology [Elsevier BV]
卷期号:315: 116693-116693 被引量:9
标识
DOI:10.1016/j.jep.2023.116693
摘要

Traditional Chinese Medicine (TCM) prescriptions are a product of the Chinese medical theory's distinct thinking and clinical experience. TCM practitioners treat diseases by enhancing the efficacy of TCM prescriptions and reducing their poisonous effects. Some TCM herb recommendation methods have been provided for curing the given symptoms to generate a group of herbs according to the TCM principles. However, they ignored the symptoms' semantic characteristics and herbs' different effects on symptoms.We aim to recommend TCM herbs by considering symptoms' semantic information and the strength of different herbs in curing symptoms.We propose a herb recommendation model named Multi-Graph Residual Attention Network and Semantic Knowledge Fusion (SMRGAT) to address these problems. Concretely, it uses a multi-head attention mechanism to focus on herbs' different effects on symptoms. Meanwhile, it augments entities' features with a residual network structure while incorporating symptoms' semantic information and external knowledge of herbs. We will verify the effect of SMRGAT on the existing public datasets and the datasets that we have collected and cleaned.Compared with the current best TCM herb recommendation model, on the public dataset, SMRGAT were increased by 15.11%, 20.60%, and 18.25% in Precision@5, Recall@5, and F1 - score@5, respectively; on ours, respectively increased by 9.72%, 9.03%, 9.24%.Our experimental results on two datasets indicate that SMRGAT is capable of recommending herbs with greater precision and outperforms several comparison methods. It can provide a basis for assisting TCM clinical prescriptions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CAOHOU应助q792309106采纳,获得10
1秒前
2秒前
2秒前
悦耳静枫发布了新的文献求助10
4秒前
烟花应助果粒多采纳,获得10
4秒前
潘善若发布了新的文献求助10
5秒前
廉凌波发布了新的文献求助10
5秒前
赘婿应助crazy采纳,获得10
5秒前
喻义梅关注了科研通微信公众号
6秒前
精明寻梅完成签到,获得积分10
6秒前
行远完成签到,获得积分10
7秒前
科目三应助感动黄豆采纳,获得10
8秒前
xueyu发布了新的文献求助10
8秒前
钱宇成完成签到,获得积分20
9秒前
修道院的豌豆完成签到,获得积分10
9秒前
廉凌波完成签到,获得积分10
10秒前
Rondab应助行远采纳,获得10
12秒前
12秒前
SYLH应助showmaker采纳,获得20
13秒前
13秒前
领导范儿应助FXQ123_范采纳,获得10
13秒前
Afaq完成签到,获得积分20
14秒前
油饼发布了新的文献求助30
16秒前
潘善若发布了新的文献求助10
16秒前
ganxinran发布了新的文献求助10
16秒前
18秒前
18秒前
20秒前
果粒多发布了新的文献求助10
23秒前
可爱的函函应助大刘采纳,获得10
24秒前
Rondab应助q792309106采纳,获得10
24秒前
24秒前
momo发布了新的文献求助10
25秒前
潘善若发布了新的文献求助10
26秒前
27秒前
斯文败类应助baronge采纳,获得10
28秒前
赘婿应助要减肥笑阳采纳,获得10
28秒前
28秒前
ganxinran完成签到,获得积分10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989263
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253814
捐赠科研通 3270066
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136