电容去离子
材料科学
离子
扩散
化学物理
电场
接受者
电极
电化学
原子物理学
物理化学
化学
凝聚态物理
物理
量子力学
有机化学
热力学
作者
Zhenzhen Fu,Dewei Wang,Yebo Yao,Xueying Gao,Xia Liu,Shiyu Wang,Shuyun Yao,Xiaoxuan Wang,Xinyue Chi,Shouxin Zhang,Yuanyuan Xiong,Jinrui Wang,Zishan Hou,Zhiyu Yang,Yi‐Ming Yan
出处
期刊:Small
[Wiley]
日期:2023-01-20
卷期号:19 (15)
被引量:26
标识
DOI:10.1002/smll.202205666
摘要
Abstract Transition metal oxides suffer from slow salt removal rate (SRR) due to inferior ions diffusion ability in hybrid capacitive deionization (HCDI). Local electric field (LEF) can efficiently improve the ions diffusion kinetics in thin electrodes for electrochemical energy storage. Nevertheless, it is still a challenge to facilitate the ions diffusion in bulk electrodes with high loading mass for HCDI. Herein, this work delicately constructs a LEF via engineering atomic‐level donor (O vacancies)–acceptor (Mn atoms) couples, which significantly facilitates the ions diffusion and then enables a high‐performance HCDI. The LEF boosts an extended accelerated ions diffusion channel at the particle surface and interparticle space, resulting in both remarkably enhanced SRR and salt removal capacity. Convincingly, the theoretical calculations demonstrate that electron‐enriched Mn atoms center coupled with an electron‐depleted O vacancies center is formed due to the electron back‐donation from O vacancies to adjacent Mn centers. The resulted LEF efficiently reduce the ions diffusion energy barrier. This work sheds light on the effect of atomic‐level LEF on improving ions diffusion kinetics at high loading mass application and paves the way for the design of transition metal oxides toward high‐performance HCDI applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI