声子
物理
凝聚态物理
反对称关系
色散关系
布里渊区
色散(光学)
量子力学
数学物理
作者
Hirokazu Tsunetsugu,Hiroaki Kusunose
标识
DOI:10.7566/jpsj.92.023601
摘要
We have developed a microscopic theory on phonon energy dispersion in chiral crystals within a harmonic approximation. One of the main issues is about the splitting of sound velocity of acoustic phonons with opposite ``crystal'' angular momentum. We have shown that the splitting must be zero even in chiral crystals and the difference starts from the order of at least $k^2$ or higher in their energy dispersion. Splitting is evident for chiral optical phonons, and we have derived a formula for their $k$-linear splitting. Another important finding is about possible interactions of atomic displacements in microscopic models. We have found that antisymmetric interactions of $\mathbf{D} _{ij} \cdot (\mathbf{d} _i \times \mathbf{d} _j) $ type are not allowed in microscopic Hamiltonians for chiral phonons in compatible with the stability against the Nambu-Goldstone mode. We have identified that the splitting in both acoustic and optical modes arises from the harmonic potentials with the electric toroidal quadrupole of $G_{u}$-type symmetry. These constraint are important for modeling real materials. Most of our microscopic calculations have been performed for (quasi-)one-dimensional systems with a trigonal crystal symmetry including Te, but these results generally hold also for other chiral phonon systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI