摘要
Advanced MaterialsVolume 35, Issue 15 2211575 Research Article Atomically Dispersed ZnN5 Sites Immobilized on g-C3N4 Nanosheets for Ultrasensitive Selective Detection of Phenanthrene by Dual Ratiometric Fluorescence Binhong Qu, Binhong Qu Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080 P. R. ChinaSearch for more papers by this authorPeng Li, Peng Li Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080 P. R. ChinaSearch for more papers by this authorLinlu Bai, Linlu Bai Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080 P. R. ChinaSearch for more papers by this authorYang Qu, Corresponding Author Yang Qu [email protected] Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080 P. R. China E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorZhijun Li, Zhijun Li Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080 P. R. ChinaSearch for more papers by this authorZiqing Zhang, Ziqing Zhang Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080 P. R. ChinaSearch for more papers by this authorBing Zheng, Corresponding Author Bing Zheng [email protected] Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080 P. R. China E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorJianhui Sun, Jianhui Sun Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080 P. R. ChinaSearch for more papers by this authorLiqiang Jing, Corresponding Author Liqiang Jing [email protected] orcid.org/0000-0002-3189-492X Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080 P. R. China E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this author Binhong Qu, Binhong Qu Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080 P. R. ChinaSearch for more papers by this authorPeng Li, Peng Li Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080 P. R. ChinaSearch for more papers by this authorLinlu Bai, Linlu Bai Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080 P. R. ChinaSearch for more papers by this authorYang Qu, Corresponding Author Yang Qu [email protected] Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080 P. R. China E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorZhijun Li, Zhijun Li Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080 P. R. ChinaSearch for more papers by this authorZiqing Zhang, Ziqing Zhang Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080 P. R. ChinaSearch for more papers by this authorBing Zheng, Corresponding Author Bing Zheng [email protected] Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080 P. R. China E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorJianhui Sun, Jianhui Sun Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080 P. R. ChinaSearch for more papers by this authorLiqiang Jing, Corresponding Author Liqiang Jing [email protected] orcid.org/0000-0002-3189-492X Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080 P. R. China E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this author First published: 21 January 2023 https://doi.org/10.1002/adma.202211575Citations: 2Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract Ultrasensitively selective detection of trace polycyclic aromatic hydrocarbons (PAHs) like phenanthrene (PHE) is critical but remains challenging. Herein, atomically dispersed Zn sites on g-C3N4 nanosheets (sZn-CN) are constructed by thermal polymerization of a Zn–cyanuric acid–melamine supramolecular precursor for the fluorescence detection of PHE. A high amount (1.6 wt%) of sZn is grafted in the cave of CN with one N vacancy in the form of unique Zn(II)N5 coordination. The optimized sZn-CN achieves a wide detection range (1 ng L−1 to 5 mg L−1), ultralow detection limit (0.35 ng L−1, with 5-order magnitude improvement over CN), and ultrahigh selectivity toward PHE even among typical PAHs based on the built PHE-CN dual ratiometric fluorescence method. By means of in situ Fourier transform infrared spectroscopy, time-resolved absorption and fluorescence spectroscopy, and theoretical calculations, the resulting superior detection performance is attributed to the favorable selective adsorption of PHE on as-constructed atomic Zn(II)N5 sites via the ionic cation–π interactions (Znδ+C2δ− type), and the fluorescence quenching is dominated by the inner filter effect (IFE) from the multilayer adsorption of PHE at low concentrations, while it is done by the protruded photogenerated electron-transfer process, as well as IFE from the monolayer adsorption of PHE at ultralow concentration. Conflict of Interest The authors declare no conflict of interest. Open Research Data Availability Statement Research data are not shared. References 1a) A. Borissov, Y. K. Maurya, L. Moshniaha, W. S. Wong, M. Żyła-Karwowska, M. Stępień, Chem. Rev. 2022, 122, 565; b) J. Wang, X. Song, Q. Li, H. Bai, C. Zhu, B. Weng, D. Yan, J. Bai, Water Res. 2019, 150, 340. 2Y. Yao, C. L. Huang, J. Z. Wang, H. G. Ni, Z. Y. Yang, Z. Y. Huang, L. J. Bao, E. Y. Zeng, Environ. Sci. Technol. 2017, 51, 8304. 3a) Z. Cai, X. Hao, X. Sun, P. Du, W. Liu, J. Fu, Water Res. 2019, 162, 369; b) Y. Zhang, L. Zhang, Z. Huang, Y. Li, J. Li, N. Wu, J. He, Z. Zhang, Y. Liu, Z. Niu, Ecotoxicol. Environ. Saf. 2019, 177, 108. 4a) Z. Meng, K. A. Mirica, Chem. Soc. Rev. 2021, 50, 13498; b) S. Khan, M. Naushad, M. Govarthanan, J. Iqbal, S. M. Alfadul, Environ. Res. 2022, 207, 112609; c) S. Xu, P. Dong, H. Liu, H. Li, C. Chen, S. Feng, J. Fan, J. Hazard. Mater. 2022, 429, 128384; d) A. P. S. Hettiyadura, A. Laskin, J. Mass Spectrom. 2022, 2, e4804; e) Z. Zeng, Y. Gao, J. Cui, M. Lin, J. Tang, F. Wang, Y. Yang, Y. Yu, S. Ma, J. Chromatogr. B 2022, 1188, 123057. 5a) G. Das, B. Garai, T. Prakasam, F. Benyettou, S. Varghese, S. K. Sharma, F. Gándara, R. Pasricha, M. Baias, R. Jagannathan, N. Saleh, M. Elhabiri, M. A. Olson, A. Trabolsi, Nat. Commun. 2022, 13, 3904; b) M. Mu, X. Ke, W. Cheng, J. Li, C. Ji, M. Yin, Anal. Chem. 2022, 94, 11470; c) B. Wang, H. Cai, G. I. N. Waterhouse, X. Qu, B. Yang, S. Lu, Small Sci. 2022, 2, 22000. 6a) R. Malik, N. Joshi, V. K. Tomer, Coord. Chem. Rev. 2022, 466, 214611; b) S. Park, Y. H. Kim, S. Kang, D. Lim, J. Park, D. Jang, S. Choi, J. Kim, S. Han, T. W. Lee, S. Park, Small Sci. 2021, 1, 2000042; c) F. Yang, X. Chu, J. Sun, Y. Zhang, Z. Li, H. Liu, L. Bai, Y. Qu, L. Jing, Chin. Chem. Lett. 2020, 31, 2784; d) Y. Markushyna, C. A. Smith, A. Savateev, Small Sci. 2020, 10, 1294. 7D. Han, D. Ni, Q. Zhou, J. Ji, Y. Lv, Y. Shen, S. Liu, Y. Zhang, Adv. Funct. Mater. 2019, 29, 1905576. 8a) J. Yang, W. Li, D. Wang, Y. Li, Small Struct. 2021, 2, 2000; b) L. Liu, A. Corma, Chem. Rev. 2018, 118, 4981; c) Y. Lei, D. Butler, M. C. Lucking, F. Zhang, T. Xia, K. Fujisawa, T. Granzier-Nakajima, R. Cruz-Silva, M. Endo, H. Terrones, M. Terrones, A. Ebrahimi, Sci. Adv. 2020, 6, eabc4250; d) L. Zhao, J. Bian, X. Zhang, L. Bai, L. Xu, Y. Qu, Z. Li, Y. Li, L. Jing, Adv. Mater. 2022, 34, 2205303; e) X. Zhang, Y. Liu, L. Chen, Z. Li, W. Wu, J. Bian, L. Jing, Small Struct. 2022, 3, 2200011. 9a) X. Ge, P. Zhou, Q. Zhang, Z. Xia, S. Chen, P. Gao, Z. Zhang, L. Gu, S. Guo, Angew. Chem., Int. Ed. 2019, 59, 232; b) X. Xie, D. P. Wang, C. Guo, Y. Liu, Q. Rao, F. Lou, Q. Li, Y. Dong, Q. Li, H. B. Yang, F. X. Hu, Anal. Chem. 2021, 93, 4916; c) Q. Rong, B. Xiao, J. Zeng, R. Yu, B. Zi, G. Zhang, Z. Zhu, J. Zhang, J. Wu, Q. Liu, ACS Sens. 2022, 7, 199. 10a) G. Zhao, H. Zhu, Adv. Mater. 2020, 32, 1905756; b) J. Chen, X. Xia, S. Chu, H. Wang, Z. Zhang, N. Xi, J. Gan, Environ. Sci. Technol. 2020, 54, 7261. 11Ç. A. Demircan, U. Bozkaya, J. Phys. Chem. A 2017, 121, 6500. 12a) P. Huang, J. Huang, S. A. Pantovich, A. D. Carl, T. G. Fenton, C. A. Caputo, R. L. Grimm, A. I. Frenkel, G. Li, J. Am. Chem. Soc. 2018, 140, 16042; b) X. Chang, S. Xu, D. Wang, Z. Zhang, Y. Guo, S. Kang, Mater. Today Adv. 2022, 15, 100274; c) B. B. Xu, X. Bin Fu, X. M. You, E. Zhao, F. F. Li, Z. Chen, Y. X. Li, X. L. Wang, Y. F. Yao, ACS Catal. 2022, 12, 6958. 13X. Zhang, X. Zhang, W. Ali, X. Chen, K. Hu, Z. Li, Y. Qu, L. Bai, Y. Gao, L. Jing, ChemCatChem 2019, 11, 6282. 14a) Q. Yang, H. Liu, P. Yuan, Y. Jia, L. Zhuang, H. Zhang, X. Yan, G. Liu, Y. Zhao, J. Liu, S. Wei, L. Song, Q. Wu, B. Ge, L. Zhang, K. Wang, X. Wang, C. R. Chang, X. Yao, J. Am. Chem. Soc. 2022, 144, 2171; b) Y. Qu, Z. Li, W. Chen, Y. Lin, T. Yuan, Z. Yang, C. Zhao, J. Wang, C. Zhao, X. Wang, F. Zhou, Z. Zhuang, Y. Wu, Y. Li, Nat. Catal. 2018, 1, 781; c) M. Tong, F. Sun, Y. Xie, Y. Wang, Y. Yang, C. Tian, L. Wang, H. Fu, Angew. Chem., Int. Ed. 2021, 60, 14005. 15a) S. Li, S. Zhao, X. Lu, M. Ceccato, X. M. Hu, A. Roldan, J. Catalano, M. Liu, T. Skrydstrup, K. Daasbjerg, Angew. Chem., Int. Ed. 2021, 60, 22826; b) W. Liu, L. Zhang, X. Liu, X. Liu, X. Yang, S. Miao, W. Wang, A. Wang, T. Zhang, J. Am. Chem. Soc. 2017, 139, 10790; c) W. Zang, T. Sun, T. Yang, S. Xi, M. Waqar, Z. Kou, Z. Lyu, Y. P. Feng, J. Wang, S. J. Pennycook, Adv. Mater. 2020, 33, 2003846. 16B. Qu, Z. Mu, Y. Liu, Y. Liu, R. Yan, J. Sun, Z. Zhang, P. Li, L. Jing, Environ. Sci.: Nano 2020, 7, 262. 17a) M. Yang, R. Lian, X. Zhang, C. Wang, J. Cheng, X. Wang, Nat. Commun. 2022, 13, 4900; b) D. Zhao, Y. Wang, C. L. Dong, Y. C. Huang, J. Chen, F. Xue, S. Shen, L. Guo, Nat. Energy 2021, 6, 338; c) X. Sun, H. Huang, Q. Zhao, T. Ma, L. Wang, Adv. Funct. Mater. 2020, 30, 1910005. 18a) Z. Hao, J. Chen, D. Zhang, L. Zheng, Y. Li, Z. Yin, G. He, L. Jiao, Z. Wen, X. J. Lv, Sci. Bull. 2021, 66, 1649; b) P. Song, M. Luo, X. Liu, W. Xing, W. Xu, Z. Jiang, L. Gu, Adv. Funct. Mater. 2017, 27, 1700802. 19Y. Wang, D. Wang, Y. Li, Adv. Mater. 2021, 33, 2008151. 20a) H. Jia, M. Qiu, C. Tang, H. Liu, S. Fu, X. Zhang, EcoMat 2022, 4, 12190; b) F. Shahraki, M. H. Tabrizi, M. N. Moghaddam, S. Hajebi, IET Nanobiotechnol. 2019, 13, 471. 21L. Han, S. Song, M. Liu, S. Yao, Z. Liang, H. Cheng, Z. Ren, W. Liu, R. Lin, G. Qi, X. Liu, Q. Wu, J. Luo, H. L. Xin, J. Am. Chem. Soc. 2020, 142, 12563. 22Y. Huang, J. Liu, C. Zhao, X. Jia, M. Ma, Y. Qian, C. Yang, K. Liu, F. Tan, Z. Wang, X. Li, S. Qu, Z. Wang, ACS Appl. Mater. Interfaces 2020, 12, 52603. 23L. Su, P. Wang, X. Ma, J. Wang, S. Zhan, Angew. Chem., Int. Ed. 2021, 60, 21261. 24a) F. Li, Y. Bu, G. F. Han, H. J. Noh, S. J. Kim, I. Ahmad, Y. Lu, P. Zhang, H. Y. Jeong, Z. Fu, Q. Zhong, J. B. Baek, Nat. Commun. 2019, 10, 2623; b) C. Xie, L. Lin, L. Huang, Z. Wang, Z. Jiang, Z. Zhang, B. Han, Nat. Commun. 2021, 12, 4823. 25Y. Zhang, J. Liu, J. Wang, Y. Zhao, D. Luo, A. Yu, X. Wang, Z. Chen, Angew. Chem., Int. Ed. 2021, 60, 26622; 26R. Guillossou, J. L. Roux, R. Mailler, C. S. Pereira-Derome, G. Varrault, A. Bressy, E. Vulliet, C. Morlay, F. Nauleau, V. Rocher, J. Gasperi, Water Res. 2020, 172, 115487. 27A. Savateev, S. Pronkin, J. D. Epping, M. G. Willinger, M. Antoniettia, D. Dontsova, J. Mater. Chem. A 2017, 5, 8394. 28a) Y. Ge, Y. Liu, B. Chu, H. He, T. Chen, S. Wang, W. Wei, S. Cheng, Environ. Sci. Technol. 2016, 50, 11076; b) X. Yuan, K. Luo, K. Zhang, J. He, Y. Zhao, D. Yu, J. Phys. Chem. A 2016, 120, 7427. 29Y. Wang, Y. Qu, B. Qu, L. Bai, Y. Liu, Z. Di Yang, W. Zhang, L. Jing, H. Fu, Adv. Mater. 2021, 33, 2105482. 30a) Y. Wang, X. Liu, X. Han, R. Godin, J. Chen, W. Zhou, C. Jiang, J. F. Thompson, K. B. Mustafa, S. A. Shevlin, J. R. Durrant, Z. Guo, J. Tang, Nat. Commun. 2020, 11, 2531; b) S. Corby, R. R. Rao, L. Steier, J. R. Durrant, Nat. Rev. Mater. 2021, 6, 1136. Citing Literature Supporting Information Filename Description adma202211575-sup-0001-SuppMat.pdf2.8 MB Supporting Information Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. Volume35, Issue15April 13, 20232211575 ReferencesRelatedInformation