亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Curvelet Adversarial Augmented Neural Network for SAR Image Classification

人工智能 判别式 计算机科学 曲线波变换 模式识别(心理学) 卷积神经网络 合成孔径雷达 人工神经网络 机器学习 小波 小波变换
作者
Yake Zhang,Fang Liu,Licheng Jiao,Shuyuan Yang,Lingling Li,Meijuan Yang,Jianlong Wang,Xu Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:5
标识
DOI:10.1109/tgrs.2023.3239226
摘要

Convolutional neural networks (CNNs) have superior feature learning capabilities with large numbers of labeled samples. The reality is that labeling these samples is costly in terms of human labor. Existing data augmentation methods alleviate the scarcity of labeled samples. However, these methods are not suitable for synthetic aperture radar (SAR) images, owing to special imaging mechanisms and observational objects. The generative SAR images by existing augmented methods show structure distortion. To address this issue, we introduce a curvelet adversarial augmented neural network (CA2NN) for SAR image classification. Specifically, an $\text{A}^{2}$ NN is established, which consists of two generative streams and one discriminative stream. In the generative stream, through the mutual transformation between the whole and partial images, more new samples with structural consistency are generated to augment the limited labeled data. In the discriminative stream, these generated samples show certain appearance variations after adversarial training based on the novel joint discriminant criterion. Simultaneously, given the multiscale and multidirectional nature of SAR images, we construct discretized curvelet in 2-D space, aiming to extract the singularity features and avoid overfitting. By integrating curvelet kernels into $\text{A}^{2}$ NN, CA2NN can automatically generate more representative features adapting to complex terrain, while greatly reducing the complexity of the network. Experiments are conducted on the SAR images with large-scale and complex scenes, suggesting that the proposed approach significantly improves the classification performance with few labeled samples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
精灵夜雨发布了新的文献求助10
10秒前
20秒前
KDS发布了新的文献求助10
25秒前
酷酷问夏完成签到 ,获得积分10
30秒前
33秒前
丸子完成签到 ,获得积分10
38秒前
38秒前
一口辰发布了新的文献求助10
45秒前
yangzai完成签到 ,获得积分10
48秒前
善学以致用应助KDS采纳,获得10
50秒前
眉姐姐的藕粉桂花糖糕完成签到 ,获得积分10
1分钟前
科研通AI5应助犹豫的踏歌采纳,获得10
1分钟前
雪飞杨完成签到 ,获得积分10
1分钟前
pp发布了新的文献求助10
1分钟前
1分钟前
科研猫头鹰完成签到,获得积分10
1分钟前
1分钟前
pp完成签到,获得积分20
1分钟前
Xiaoxiao应助科研通管家采纳,获得10
1分钟前
香蕉觅云应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Xiaoxiao应助科研通管家采纳,获得10
1分钟前
2分钟前
Billy发布了新的文献求助10
2分钟前
Ava应助LeezZZZ采纳,获得10
2分钟前
曹年跃完成签到,获得积分10
2分钟前
犹豫的踏歌完成签到,获得积分10
2分钟前
善学以致用应助Elton采纳,获得10
3分钟前
3分钟前
3分钟前
Elton发布了新的文献求助10
3分钟前
LeezZZZ发布了新的文献求助10
3分钟前
么么完成签到 ,获得积分10
3分钟前
丘比特应助Elton采纳,获得10
3分钟前
852应助一口辰采纳,获得10
3分钟前
华仔应助俞思含采纳,获得10
3分钟前
3分钟前
Elton发布了新的文献求助10
3分钟前
3分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555707
求助须知:如何正确求助?哪些是违规求助? 3131341
关于积分的说明 9390816
捐赠科研通 2831055
什么是DOI,文献DOI怎么找? 1556317
邀请新用户注册赠送积分活动 726483
科研通“疑难数据库(出版商)”最低求助积分说明 715803