氨生产
零排放
氨
环境科学
零(语言学)
碳纤维
温室气体
废物管理
化学
计算机科学
工程类
算法
地质学
海洋学
语言学
哲学
有机化学
复合数
作者
Mostafa El‐Shafie,Shinji Kambara
标识
DOI:10.1016/j.ijhydene.2022.09.061
摘要
As a carbon-free molecule, ammonia has gained great global interest in being considered a significant future candidate for the transition toward renewable energy. Numerous applications of ammonia as a fuel have been developed for energy generation, heavy transportation, and clean, distributed energy storage. There is a clear global target to achieve a sustainable economy and carbon neutrality. Therefore, most of the research's efforts are concentrated on generating cost-effective renewable energy on a large scale rather than fossil fuels. However, storage and transportation are still roadblocks for these technologies, for example, hydrogen technologies. Ammonia could be replaced as a viable fuel for a clean and sustainable future of global energy. More efforts from governments and scientists can lead to making ammonia a clean energy vector in most energy applications. In this review, ammonia synthesis was assessed, including conventional Haber–Bosch technology. Current hydrogen technologies as the key parameters for ammonia generation are also evaluated. The role of ammonia as a hydrogen-based fuel and generation roadmap are discussed for future utilization of energy mix. Further, ammonia generation processes are addressed in depth, including blue and green ammonia generation. A survey of ammonia synthesis catalytic materials was conducted and the role of catalyst materials in ammonia generation was compared, which showed that the Ru-based catalyst generated the maximum ammonia after 20 h of starting experiment. An end-use plan for using ammonia as a clean energy fuel in vehicles, marines, gas turbines as well as fuel cells, is briefly discussed to recognize the potential applications of ammonia use. The practical and future end-use vision of energy sources is proposed to achieve great benefits at low carbon emissions and costs. This review can provide prospective knowledge of large-scale aspects and environmental considerations of ammonia. Herein, we conclude that ammonia will become the “clean energy carrier link” that will achieve the global energy and economy sustainability targets.
科研通智能强力驱动
Strongly Powered by AbleSci AI