Hybrid model navigation method for autonomous underwater vehicle

扩展卡尔曼滤波器 卡尔曼滤波器 状态向量 水下 克里金 计算机科学 控制理论(社会学) 人工智能 工程类 机器学习 经典力学 海洋学 物理 地质学 控制(管理)
作者
Xin Zhang,Bo He,Pengcheng Mu,Di Zhang
出处
期刊:Ocean Engineering [Elsevier]
卷期号:261: 112027-112027 被引量:1
标识
DOI:10.1016/j.oceaneng.2022.112027
摘要

Accurate navigation and localization are essential for Autonomous Underwater Vehicles (AUVs). However, the unknown modeling errors and nonlinear errors will affect the AUV positioning accuracy. Meanwhile, the marine environment changes may not be accurately sensed by AUV. Therefore, this paper proposes a Hybrid Model (HM) navigation methodology for AUV to reduce the impact of unknown errors and better predict the future states simultaneously. Firstly, an error correction sub-model based on Sequence to Sequence (Seq2Seq) predicts AUV pseudo displacements. The pseudo displacements are augmented to the observation vector to correct the unknown errors in the state estimation. Secondly, a state regression sub-model based on Gaussian Process Regression (GPR) is utilized to capture the motion trends from the historical data and regress the state variation, which is used to resist the unknown disturbances in the changeable marine environment. The sub-models work parallel with the master model, benefiting from the Interacting Multiple Model (IMM). We compare the performance of the proposed HM to Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), and IMM-EKF by using the actual experimental data of Sailfish 210 AUV. The experimental results show that the proposed HM algorithm achieves superior navigation accuracy and good fault tolerance capability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lasse发布了新的文献求助10
刚刚
眯眯眼的宛白完成签到,获得积分20
2秒前
4秒前
我崽了你发布了新的文献求助30
5秒前
6秒前
fanf完成签到,获得积分10
7秒前
完美世界应助mayun95采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
ashin17发布了新的文献求助10
11秒前
11秒前
科研通AI2S应助cxw采纳,获得10
13秒前
13秒前
呼噜呼噜毛完成签到 ,获得积分10
15秒前
15秒前
烟花应助QinQin采纳,获得10
15秒前
JamesPei应助猪猪hero采纳,获得10
16秒前
16秒前
17秒前
黄颖完成签到,获得积分10
17秒前
19秒前
20秒前
CodeCraft应助Nora采纳,获得10
21秒前
灵巧帽子发布了新的文献求助20
22秒前
小吴同学发布了新的文献求助10
24秒前
黄芪2号完成签到,获得积分10
24秒前
24秒前
24秒前
Jes完成签到,获得积分10
25秒前
凶狠的棒棒糖关注了科研通微信公众号
25秒前
谦让雨柏完成签到 ,获得积分10
25秒前
25秒前
26秒前
26秒前
黄芪2号发布了新的文献求助10
27秒前
微笑翠桃发布了新的文献求助10
28秒前
浅蓝色的盛夏完成签到 ,获得积分10
29秒前
wen完成签到,获得积分10
29秒前
张123完成签到,获得积分10
31秒前
古月完成签到,获得积分10
31秒前
Cristina2024完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716