Realistic acceleration of neural networks with fine-grained tensor decomposition

计算机科学 计算 换位(逻辑) 张量(固有定义) 张量分解 循环神经网络 人工神经网络 推论 算法 压缩(物理) 可扩展性 分解 加速度 数据压缩 人工智能 数学 生物 物理 生态学 复合材料 数据库 材料科学 纯数学 经典力学
作者
Rui Lv,Dingheng Wang,Jiangbin Zheng,Yefan Xie,Zhao-Xu Yang
出处
期刊:Neurocomputing [Elsevier]
卷期号:512: 52-68 被引量:1
标识
DOI:10.1016/j.neucom.2022.09.057
摘要

As the modern deep neural networks (DNNs) have become more and more large-scale and expensive, the topic of DNN compression grows into a hot direction nowadays. Among variant compression methods, tensor decomposition seems to be the most promising and low-cost one because of its solid mathematical foundations and regular data structure. However, most of the existing tensor decompositions are not very good at accelerating DNNs, because there are always necessary transpositions on tensor modes to make the input data calculate with the decomposed factor tensors correctly, and transposition will bring extra memory and time cost for the realistic system without doubt. In this paper, we select a relatively novel Kronecker CANDECOMP/PARAFAC (KCP) tensor decomposition which has fine-grained factor tensors, and propose the transposition-free algorithm to calculate the contractions between the input data and the neural weight in KCP format. The theoretically analysis of computation complexity indicates that the proposed method is much more efficient than the existing algorithms. We further prove that the training complexity of KCP-DNN based on the proposed transposition-free algorithm can also be faster than the traditional ones, and make a comprehensive comparison of space and computation complexity including training and inference stages to show the superiority of our method. As a series of related works pay more attention to the recurrent neural networks (RNNs), we follow these existing practices and focus on the KCP-RNN to make a comprehensive comparison with them, and the experimental results show our KCP-RNN with transposition-free algorithm has systematically advantages including accuracy, space complexity, computation complexity, and realistic running time. Besides, some advanced characteristics of KCP-DNN such as collocation of ranks, have also been discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SYLH应助aaaaa采纳,获得10
刚刚
小纪关注了科研通微信公众号
1秒前
大模型应助白云朵儿采纳,获得30
1秒前
感性的沉鱼完成签到 ,获得积分10
1秒前
2秒前
3秒前
狄1234567完成签到,获得积分10
3秒前
3秒前
DS给DS的求助进行了留言
3秒前
lxf448发布了新的文献求助10
3秒前
daniel发布了新的文献求助10
6秒前
金虎发布了新的文献求助10
6秒前
天天快乐应助坤坤采纳,获得10
6秒前
还好发布了新的文献求助10
6秒前
袁大头发布了新的文献求助10
6秒前
小猪同学发布了新的文献求助10
7秒前
8秒前
顾矜应助芒果柠檬采纳,获得10
8秒前
霉小欧完成签到,获得积分10
9秒前
seacnli完成签到 ,获得积分10
9秒前
1122完成签到,获得积分10
9秒前
寂寞剑仙完成签到,获得积分10
9秒前
小飞七应助zzz采纳,获得10
10秒前
10秒前
10秒前
11秒前
KeYang完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
13秒前
寂寞剑仙发布了新的文献求助10
14秒前
杨树发布了新的文献求助10
15秒前
慕青应助Finger采纳,获得10
16秒前
白云朵儿发布了新的文献求助30
16秒前
kk发布了新的文献求助10
16秒前
Orange应助xuyan采纳,获得10
17秒前
深情安青应助未明的感觉采纳,获得10
17秒前
科研通AI5应助Tayzon采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514919
求助须知:如何正确求助?哪些是违规求助? 3097284
关于积分的说明 9234961
捐赠科研通 2792241
什么是DOI,文献DOI怎么找? 1532370
邀请新用户注册赠送积分活动 712002
科研通“疑难数据库(出版商)”最低求助积分说明 707071