A multiple frequency bands parallel spatial–temporal 3D deep residual learning framework for EEG-based emotion recognition

可解释性 残余物 脑电图 判别式 计算机科学 人工智能 语音识别 模式识别(心理学) 脑-机接口 特征(语言学) 水准点(测量) 深度学习 特征选择 无线电频谱 心理学 算法 地理 哲学 精神科 电信 语言学 大地测量学
作者
Minmin Miao,Longxin Zheng,Baoguo Xu,Yang Zhong,Wenjun Hu
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:79: 104141-104141 被引量:36
标识
DOI:10.1016/j.bspc.2022.104141
摘要

Electroencephalography (EEG) based emotion recognition has become a hot research issue in the field of cognitive interaction and brain-computer interface (BCI). How to build a deep learning model which can fully learn frequency-spatial–temporal representation from complex emotional EEG data and has good neurological interpretability is still challenging. In this paper, a novel multiple frequency bands parallel spatial–temporal 3D deep residual learning framework (MFBPST-3D-DRLF) is proposed for EEG-based emotion recognition. Firstly, a new optimal frequency bands selection method based on group sparse regression is designed for characteristic analysis on frequency domain. Secondly, spatial–temporal 3D feature representations of multiple frequency bands are generated in the data preparation stage for fully expressing the discriminative local patterns among brain responses of different emotional states. Finally, a novel parallel 3D deep residual networks architecture is elaborately constructed to simultaneously extract high level abstract features and achieve accurate classification. Emotional EEG recognition performance of the proposed method has been evaluated on two benchmark datasets, namely SEED and SEED-IV. The proposed MFBPST-3D-DRLF achieves 96.67% and 88.21% on both datasets, outperforming several state-of-the-art algorithms. In addition, investigations on the intermediate results and model parameters reveal that neural signatures associated with different emotional states are traceable and gamma band is most suitable for EEG based emotion recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王杏利完成签到,获得积分10
刚刚
刚刚
领导范儿应助坚强幼晴采纳,获得10
1秒前
SAINT完成签到,获得积分10
4秒前
Hiyori完成签到,获得积分10
4秒前
qingqing168完成签到,获得积分10
5秒前
5秒前
Zj发布了新的文献求助100
6秒前
lx完成签到 ,获得积分20
7秒前
huyuan发布了新的文献求助30
7秒前
7秒前
顾矜应助ohh采纳,获得10
7秒前
8秒前
myco完成签到,获得积分10
8秒前
pcr163应助zjc1111采纳,获得50
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
hailan完成签到,获得积分20
10秒前
鬼笔环肽发布了新的文献求助10
11秒前
熊遇蜜发布了新的文献求助10
11秒前
段dwh发布了新的文献求助10
11秒前
11秒前
坚强幼晴发布了新的文献求助10
12秒前
12秒前
12秒前
时间有泪1212完成签到 ,获得积分10
13秒前
小蜻蜓应助沉静的愫采纳,获得10
14秒前
可靠半青完成签到 ,获得积分10
15秒前
hailan发布了新的文献求助10
17秒前
17秒前
小羊完成签到,获得积分10
17秒前
19秒前
旎旎完成签到,获得积分10
20秒前
段dwh完成签到,获得积分10
20秒前
21秒前
21秒前
北栀完成签到,获得积分10
21秒前
璐lu完成签到 ,获得积分10
22秒前
秦摆烂发布了新的文献求助30
22秒前
Chelry发布了新的文献求助10
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958282
求助须知:如何正确求助?哪些是违规求助? 3504444
关于积分的说明 11118494
捐赠科研通 3235770
什么是DOI,文献DOI怎么找? 1788433
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802582