A survey on machine learning models for financial time series forecasting

计算机科学 机器学习 人工智能 财务 大数据 金融市场 财务建模 投资决策 数据挖掘 经济 行为经济学
作者
Yajiao Tang,Zhenyu Song,Yulin Zhu,Huaiyu Yuan,Maozhang Hou,Junkai Ji,Cheng Tang,Jianqiang Li
出处
期刊:Neurocomputing [Elsevier]
卷期号:512: 363-380 被引量:67
标识
DOI:10.1016/j.neucom.2022.09.003
摘要

Financial time series (FTS) are nonlinear, dynamic and chaotic. The search for models to facilitate FTS forecasting has been highly pursued for decades. Despite major related challenges, there has been much interest in this topic, and many efforts to forecast financial market pricing and the average movement of various financial assets have been implemented. Researchers have applied different models based on computer science and economics to gain efficient information and earn money through financial market investment decisions. Machine learning (ML) methods are popular and successful algorithms applied in the FTS domain. This paper provides a timely review of ML’s adoption in FTS forecasting. The progress of FTS forecasting models using ML methods is systematically summarized by searching articles published from 2011 to 2021. Focusing on the analysis of ML methods applied to the theoretical basis and empirical application of FTS data forecasting, this paper provides a relevant reference for FTS forecasting and interdisciplinary fusion research against the background of computational intelligence and big data. The literature survey reveals that the most commonly used models for prediction involve long short-term memory (LSTM) and hybrid methods. The main contribution of this paper is not only building a systematic program to compare the merits and demerits of specific FTS forecasting models but also detecting the importance and differences of each model to help researchers and practitioners make good choices. In addition, the limitations to be addressed and future research directions of ML models’ adoption in FTS forecasting are identified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助嘻嘻滑呀采纳,获得10
刚刚
VDC应助22h采纳,获得30
1秒前
崔噔噔发布了新的文献求助10
2秒前
美好焦完成签到,获得积分10
2秒前
3秒前
3秒前
闪闪芷波发布了新的文献求助10
4秒前
彩色夜阑完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
6秒前
jvmao发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
小猪坨完成签到,获得积分10
9秒前
个性的紫菜应助无敌辉儿采纳,获得20
9秒前
10秒前
PJ发布了新的文献求助10
11秒前
SYLH应助忧郁依霜采纳,获得10
11秒前
11秒前
12秒前
12秒前
崔噔噔发布了新的文献求助10
13秒前
陶醉雅旋完成签到,获得积分10
13秒前
打工人发布了新的文献求助10
13秒前
lxlcx应助找文献找文献采纳,获得10
14秒前
15秒前
Aurinse发布了新的文献求助10
16秒前
2019kyxb发布了新的文献求助10
16秒前
chengymao完成签到,获得积分10
17秒前
17秒前
眠眠冰发布了新的文献求助10
17秒前
18秒前
麻雀完成签到 ,获得积分10
18秒前
yingzi发布了新的文献求助10
18秒前
思源应助jvmao采纳,获得10
19秒前
19秒前
20秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3482810
求助须知:如何正确求助?哪些是违规求助? 3072319
关于积分的说明 9126371
捐赠科研通 2764054
什么是DOI,文献DOI怎么找? 1516797
邀请新用户注册赠送积分活动 701797
科研通“疑难数据库(出版商)”最低求助积分说明 700690