A survey on machine learning models for financial time series forecasting

计算机科学 机器学习 人工智能 财务 大数据 金融市场 财务建模 投资决策 数据挖掘 经济 行为经济学
作者
Yajiao Tang,Zhenyu Song,Yulin Zhu,Huaiyu Yuan,Maozhang Hou,Junkai Ji,Cheng Tang,Jianqiang Li
出处
期刊:Neurocomputing [Elsevier]
卷期号:512: 363-380 被引量:67
标识
DOI:10.1016/j.neucom.2022.09.003
摘要

Financial time series (FTS) are nonlinear, dynamic and chaotic. The search for models to facilitate FTS forecasting has been highly pursued for decades. Despite major related challenges, there has been much interest in this topic, and many efforts to forecast financial market pricing and the average movement of various financial assets have been implemented. Researchers have applied different models based on computer science and economics to gain efficient information and earn money through financial market investment decisions. Machine learning (ML) methods are popular and successful algorithms applied in the FTS domain. This paper provides a timely review of ML’s adoption in FTS forecasting. The progress of FTS forecasting models using ML methods is systematically summarized by searching articles published from 2011 to 2021. Focusing on the analysis of ML methods applied to the theoretical basis and empirical application of FTS data forecasting, this paper provides a relevant reference for FTS forecasting and interdisciplinary fusion research against the background of computational intelligence and big data. The literature survey reveals that the most commonly used models for prediction involve long short-term memory (LSTM) and hybrid methods. The main contribution of this paper is not only building a systematic program to compare the merits and demerits of specific FTS forecasting models but also detecting the importance and differences of each model to help researchers and practitioners make good choices. In addition, the limitations to be addressed and future research directions of ML models’ adoption in FTS forecasting are identified.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助巫雍采纳,获得10
2秒前
月亮moon发布了新的文献求助10
2秒前
欣欣发布了新的文献求助20
2秒前
科研通AI6应助lulululi采纳,获得10
3秒前
3秒前
3秒前
sh0w发布了新的文献求助10
3秒前
春山发布了新的文献求助10
3秒前
3秒前
Fan发布了新的文献求助10
3秒前
绕越完成签到,获得积分20
4秒前
旺仔发发完成签到,获得积分20
4秒前
可靠书包发布了新的文献求助10
4秒前
HHHHHHH完成签到,获得积分20
5秒前
听雨发布了新的文献求助30
5秒前
量子星尘发布了新的文献求助10
5秒前
秋刀鱼完成签到,获得积分10
5秒前
5秒前
lingmuhuahua完成签到,获得积分10
5秒前
李健应助暴富小羊采纳,获得10
6秒前
路瑶瑶完成签到,获得积分10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
小蘑菇应助斑马采纳,获得10
7秒前
7秒前
HXY完成签到 ,获得积分10
7秒前
chenamy完成签到,获得积分10
7秒前
8秒前
张佳宁发布了新的文献求助10
8秒前
8秒前
简默完成签到,获得积分10
8秒前
笨笨千秋完成签到,获得积分10
9秒前
小王完成签到,获得积分10
9秒前
9秒前
WYN发布了新的文献求助10
9秒前
9秒前
10秒前
赘婿应助GOJO采纳,获得10
11秒前
张宜诺发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661010
求助须知:如何正确求助?哪些是违规求助? 4836679
关于积分的说明 15093101
捐赠科研通 4819724
什么是DOI,文献DOI怎么找? 2579492
邀请新用户注册赠送积分活动 1533827
关于科研通互助平台的介绍 1492616