清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A survey on machine learning models for financial time series forecasting

计算机科学 机器学习 人工智能 财务 大数据 金融市场 财务建模 投资决策 数据挖掘 经济 行为经济学
作者
Yajiao Tang,Zhenyu Song,Yulin Zhu,Huaiyu Yuan,Maozhang Hou,Junkai Ji,Cheng Tang,Jianqiang Li
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:512: 363-380 被引量:67
标识
DOI:10.1016/j.neucom.2022.09.003
摘要

Financial time series (FTS) are nonlinear, dynamic and chaotic. The search for models to facilitate FTS forecasting has been highly pursued for decades. Despite major related challenges, there has been much interest in this topic, and many efforts to forecast financial market pricing and the average movement of various financial assets have been implemented. Researchers have applied different models based on computer science and economics to gain efficient information and earn money through financial market investment decisions. Machine learning (ML) methods are popular and successful algorithms applied in the FTS domain. This paper provides a timely review of ML’s adoption in FTS forecasting. The progress of FTS forecasting models using ML methods is systematically summarized by searching articles published from 2011 to 2021. Focusing on the analysis of ML methods applied to the theoretical basis and empirical application of FTS data forecasting, this paper provides a relevant reference for FTS forecasting and interdisciplinary fusion research against the background of computational intelligence and big data. The literature survey reveals that the most commonly used models for prediction involve long short-term memory (LSTM) and hybrid methods. The main contribution of this paper is not only building a systematic program to compare the merits and demerits of specific FTS forecasting models but also detecting the importance and differences of each model to help researchers and practitioners make good choices. In addition, the limitations to be addressed and future research directions of ML models’ adoption in FTS forecasting are identified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
lod完成签到,获得积分10
7秒前
磨刀霍霍阿里嘎多完成签到 ,获得积分10
10秒前
紫熊发布了新的文献求助10
21秒前
Liufgui应助水天一色采纳,获得10
27秒前
fang完成签到,获得积分10
33秒前
37秒前
52秒前
xiaozou55完成签到 ,获得积分10
53秒前
紫熊发布了新的文献求助20
1分钟前
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
李健应助科研通管家采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
drhwang完成签到,获得积分10
1分钟前
1分钟前
小强完成签到 ,获得积分10
1分钟前
kangshuai完成签到,获得积分10
1分钟前
水天一色发布了新的文献求助10
1分钟前
2分钟前
Liufgui应助乏味采纳,获得10
2分钟前
2分钟前
bellapp完成签到 ,获得积分10
2分钟前
2分钟前
Liufgui应助Fern采纳,获得30
2分钟前
2分钟前
2分钟前
2分钟前
DSUNNY完成签到 ,获得积分10
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
852应助科研通管家采纳,获得10
3分钟前
忘忧Aquarius完成签到,获得积分10
3分钟前
貔貅完成签到 ,获得积分10
3分钟前
南苏发布了新的文献求助10
3分钟前
3分钟前
WenJun完成签到,获得积分10
3分钟前
3分钟前
3分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015340
求助须知:如何正确求助?哪些是违规求助? 3555298
关于积分的说明 11317940
捐赠科研通 3288605
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983