Gas-Particle Uptake and Hygroscopic Growth by Organosulfate Particles

粘度 粒子(生态学) 化学 相对湿度 大气(单位) 粒径 相(物质) 环境化学 热力学 物理化学 有机化学 海洋学 物理 地质学
作者
Paul E. Ohno,Junfeng Wang,Fabian Mahrt,Jonathan G. Varelas,Eleonora Aruffo,Jianhuai Ye,Yiming Qin,Kristian J. Kiland,Allan K. Bertram,Regan J. Thomson,Scot T. Martin
出处
期刊:ACS earth and space chemistry [American Chemical Society]
卷期号:6 (10): 2481-2490 被引量:14
标识
DOI:10.1021/acsearthspacechem.2c00195
摘要

Organosulfate compounds make up a substantial fraction of the particle mass concentration in some regions of the Earth's atmosphere, and organosulfate particles can have sufficiently high viscosity to limit rates of gas-particle interactions. Viscosity varies with relative humidity (RH). Herein, organosulfate particles were exposed to the gas-phase products of α-pinene photooxidation. The gas-particle partitioning of these species was studied from 15 to 70% RH and <1 to 16 ppb NO at 299 K. The uptake of the α-pinene oxidation products increased with the increase in RH, and higher gas-phase NO concentrations resulted in increased particle-phase concentrations of nitrogen compounds. Particle hygroscopicity was examined by optical microscopy. Hygroscopic growth at elevated RH was sufficient to explain the RH-dependent uptake measurements, and kinetic limitations tied to particle viscosity were not observed. The lack of kinetic limitations combined with the Stokes–Einstein equation implied a viscosity much less than 1 × 106 Pa s. This value is consistent with estimated viscosities based on literature parameterizations for water mass fractions in the particles of at least 0.05 at 15% RH. Overall, these results suggest that organosulfate hygroscopicity plays a key role in their viscosity and hence in regulating gas-particle partitioning, thereby simplifying the treatment of atmospheric chemistry and transport of pollutants in models of the Earth's atmosphere. The role of organosulfates is expected to take on increasing importance for projected future emission trends.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文艺明杰发布了新的文献求助10
刚刚
刚刚
炙热冰夏发布了新的文献求助10
刚刚
刚刚
大意的青槐完成签到,获得积分10
1秒前
1秒前
nalan完成签到,获得积分10
1秒前
NN应助影子采纳,获得10
1秒前
天真思雁完成签到 ,获得积分10
2秒前
在水一方应助火星上白羊采纳,获得10
2秒前
小吕完成签到,获得积分10
3秒前
3秒前
wanci应助科研CY采纳,获得10
3秒前
Lxxixixi完成签到,获得积分10
3秒前
4秒前
linktheboy完成签到,获得积分10
4秒前
VVhahaha发布了新的文献求助10
4秒前
可靠从云完成签到 ,获得积分10
5秒前
5秒前
慕青应助通~采纳,获得10
5秒前
小二郎应助勤奋的蜗牛采纳,获得10
5秒前
小郭同学发布了新的文献求助10
6秒前
6秒前
俎树同发布了新的文献求助10
6秒前
nalan发布了新的文献求助10
6秒前
lichaoyes完成签到,获得积分10
7秒前
fanfanzzz发布了新的文献求助30
7秒前
chengche完成签到,获得积分10
7秒前
windyhill完成签到,获得积分10
8秒前
小二郎应助岁月轮回采纳,获得10
9秒前
9秒前
浅笑完成签到,获得积分10
10秒前
10秒前
希望天下0贩的0应助hohokuz采纳,获得10
10秒前
柏梦岚发布了新的文献求助10
11秒前
11秒前
12秒前
CodeCraft应助柳絮采纳,获得10
12秒前
12秒前
整齐冬瓜完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762