Past, Present, and Future of Machine Learning and Artificial Intelligence for Breast Cancer Screening

可解释性 人工智能 概化理论 计算机科学 机器学习 乳腺癌筛查 深度学习 人工智能应用 乳腺癌 模式 任务(项目管理) 乳腺摄影术 癌症 医学 心理学 工程类 发展心理学 社会科学 系统工程 社会学 内科学
作者
Natalie Baughan,Lindsay Douglas,Maryellen L. Giger
出处
期刊:Journal of breast imaging [Oxford University Press]
卷期号:4 (5): 451-459 被引量:11
标识
DOI:10.1093/jbi/wbac052
摘要

Abstract Breast cancer screening has evolved substantially over the past few decades because of advancements in new image acquisition systems and novel artificial intelligence (AI) algorithms. This review provides a brief overview of the history, current state, and future of AI in breast cancer screening and diagnosis along with challenges involved in the development of AI systems. Although AI has been developing for interpretation tasks associated with breast cancer screening for decades, its potential to combat the subjective nature and improve the efficiency of human image interpretation is always expanding. The rapid advancement of computational power and deep learning has increased greatly in AI research, with promising performance in detection and classification tasks across imaging modalities. Most AI systems, based on human-engineered or deep learning methods, serve as concurrent or secondary readers, that is, as aids to radiologists for a specific, well-defined task. In the future, AI may be able to perform multiple integrated tasks, making decisions at the level of or surpassing the ability of humans. Artificial intelligence may also serve as a partial primary reader to streamline ancillary tasks, triaging cases or ruling out obvious normal cases. However, before AI is used as an independent, autonomous reader, various challenges need to be addressed, including explainability and interpretability, in addition to repeatability and generalizability, to ensure that AI will provide a significant clinical benefit to breast cancer screening across all populations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bluesiryao发布了新的文献求助10
1秒前
1秒前
2秒前
嘟嘟金子完成签到,获得积分10
2秒前
Lllll发布了新的文献求助10
2秒前
思源应助时雨采纳,获得10
2秒前
DL给DL的求助进行了留言
2秒前
李子园完成签到,获得积分10
3秒前
木子乐妍完成签到,获得积分10
3秒前
武汉大学王洋完成签到,获得积分10
3秒前
可爱的函函应助西街奶昔采纳,获得10
3秒前
ting发布了新的文献求助10
3秒前
小二郎应助谭美玲采纳,获得10
4秒前
慕青应助DexterW采纳,获得10
5秒前
任梓宁发布了新的文献求助10
5秒前
希望天下0贩的0应助Cody采纳,获得10
6秒前
7秒前
122发布了新的文献求助10
7秒前
7秒前
瓜呱完成签到 ,获得积分10
7秒前
CodeCraft应助涵仔666采纳,获得10
7秒前
8秒前
岂识浊醪妙理完成签到,获得积分10
8秒前
9秒前
10秒前
开心以珊完成签到,获得积分20
10秒前
阳光总在风雨后完成签到,获得积分10
11秒前
汉堡包应助复杂汉堡采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
杳鸢应助科研通管家采纳,获得10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
12秒前
任梓宁完成签到,获得积分10
12秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Agenda-setting and journalistic translation: The New York Times in English, Spanish and Chinese 1000
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Publish or Perish: Perceived Benefits versus Unintended Consequences, Second Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3390520
求助须知:如何正确求助?哪些是违规求助? 3002003
关于积分的说明 8801503
捐赠科研通 2688604
什么是DOI,文献DOI怎么找? 1472715
科研通“疑难数据库(出版商)”最低求助积分说明 681081
邀请新用户注册赠送积分活动 673803