Past, Present, and Future of Machine Learning and Artificial Intelligence for Breast Cancer Screening

可解释性 人工智能 概化理论 计算机科学 机器学习 乳腺癌筛查 深度学习 人工智能应用 乳腺癌 模式 任务(项目管理) 乳腺摄影术 癌症 医学 心理学 工程类 发展心理学 社会科学 系统工程 社会学 内科学
作者
Natalie Baughan,Lindsay Douglas,Maryellen L. Giger
出处
期刊:Journal of breast imaging [Oxford University Press]
卷期号:4 (5): 451-459 被引量:11
标识
DOI:10.1093/jbi/wbac052
摘要

Abstract Breast cancer screening has evolved substantially over the past few decades because of advancements in new image acquisition systems and novel artificial intelligence (AI) algorithms. This review provides a brief overview of the history, current state, and future of AI in breast cancer screening and diagnosis along with challenges involved in the development of AI systems. Although AI has been developing for interpretation tasks associated with breast cancer screening for decades, its potential to combat the subjective nature and improve the efficiency of human image interpretation is always expanding. The rapid advancement of computational power and deep learning has increased greatly in AI research, with promising performance in detection and classification tasks across imaging modalities. Most AI systems, based on human-engineered or deep learning methods, serve as concurrent or secondary readers, that is, as aids to radiologists for a specific, well-defined task. In the future, AI may be able to perform multiple integrated tasks, making decisions at the level of or surpassing the ability of humans. Artificial intelligence may also serve as a partial primary reader to streamline ancillary tasks, triaging cases or ruling out obvious normal cases. However, before AI is used as an independent, autonomous reader, various challenges need to be addressed, including explainability and interpretability, in addition to repeatability and generalizability, to ensure that AI will provide a significant clinical benefit to breast cancer screening across all populations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助内向绿海采纳,获得10
刚刚
刚刚
1秒前
3秒前
柠檬发布了新的文献求助30
4秒前
科研小白发布了新的文献求助10
4秒前
南瓜豆腐完成签到 ,获得积分10
4秒前
咕嘟咕嘟完成签到,获得积分20
4秒前
5秒前
小青蛙OA发布了新的文献求助10
5秒前
NIN发布了新的文献求助10
6秒前
霸气的瑛发布了新的文献求助10
6秒前
白暮雪完成签到,获得积分10
7秒前
内向的清炎完成签到,获得积分20
7秒前
9秒前
九酌完成签到 ,获得积分10
9秒前
10秒前
11秒前
老迟到的冬萱完成签到,获得积分10
12秒前
CodeCraft应助长情新晴采纳,获得10
12秒前
白暮雪发布了新的文献求助10
13秒前
XX完成签到 ,获得积分10
14秒前
14秒前
美满幻波完成签到,获得积分10
14秒前
星辰大海应助小垃圾采纳,获得10
15秒前
科研通AI5应助yueyue采纳,获得10
15秒前
zhangtong完成签到,获得积分10
15秒前
英俊的铭应助隐形的发卡采纳,获得10
16秒前
16秒前
17秒前
美满幻波发布了新的文献求助10
18秒前
李爱国应助草草采纳,获得10
18秒前
柠檬完成签到,获得积分10
19秒前
完美世界应助科研小白采纳,获得10
20秒前
vivi完成签到,获得积分10
20秒前
霸气的瑛发布了新的文献求助10
21秒前
ytg922完成签到,获得积分10
23秒前
顾矜应助jessica采纳,获得10
24秒前
俊逸绝音完成签到,获得积分10
25秒前
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
中国化工新材料产业发展报告(2024年) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3762335
求助须知:如何正确求助?哪些是违规求助? 3306124
关于积分的说明 10137030
捐赠科研通 3020291
什么是DOI,文献DOI怎么找? 1658888
邀请新用户注册赠送积分活动 792138
科研通“疑难数据库(出版商)”最低求助积分说明 754880