Image-based machine learning for materials science

人工智能 计算机科学 机器学习 图像处理 图像(数学)
作者
Lei Zhang,Shaofeng Shao
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:132 (10) 被引量:33
标识
DOI:10.1063/5.0087381
摘要

Materials research studies are dealing with a large number of images, which can now be facilitated via image-based machine learning techniques. In this article, we review recent progress of machine learning-driven image recognition and analysis for the materials and chemical domains. First, the image-based machine learning that facilitates the property prediction of chemicals or materials is discussed. Second, the analysis of nanoscale images including those from a scanning electron microscope and a transmission electron microscope is discussed, which is followed by the discussion about the identification of molecular structures via image recognition. Subsequently, the image-based machine learning works to identify and classify various practical materials such as metal, ceramics, and polymers are provided, and the image recognition for a range of real-scenario device applications such as solar cells is provided in detail. Finally, suggestions and future outlook for image-based machine learning for classification and prediction tasks in the materials and chemical science are presented. This article highlights the importance of the integration of the image-based machine learning method into materials and chemical science and calls for a large-scale deployment of image-based machine learning methods for prediction and classification of images in materials and chemical science.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邹邹邹发布了新的文献求助10
1秒前
2秒前
2秒前
淀粉肠发布了新的文献求助10
2秒前
3秒前
小禾发布了新的文献求助10
4秒前
Chang完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
6秒前
花花发布了新的文献求助10
6秒前
7秒前
Y哦莫哦莫发布了新的文献求助10
9秒前
9秒前
Jenlisa发布了新的文献求助10
11秒前
zke发布了新的文献求助10
11秒前
乐乐应助蓝胖子采纳,获得30
11秒前
小禾完成签到,获得积分10
12秒前
13秒前
13秒前
wtt发布了新的文献求助10
16秒前
Chang发布了新的文献求助10
16秒前
JamesPei应助米果采纳,获得10
17秒前
17秒前
赘婿应助Y哦莫哦莫采纳,获得10
19秒前
20秒前
NexusExplorer应助阿白采纳,获得10
21秒前
Heaven发布了新的文献求助20
24秒前
25秒前
蟹黄堡秘方关注了科研通微信公众号
25秒前
传奇3应助Berry采纳,获得10
26秒前
犹豫小懒虫完成签到,获得积分10
26秒前
刘佳婷发布了新的文献求助10
27秒前
29秒前
yuki发布了新的文献求助20
29秒前
研友_VZG7GZ应助Chang采纳,获得10
29秒前
ren应助贪玩的语蕊采纳,获得10
30秒前
30秒前
30秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The diagnosis of sex before birth using cells from the amniotic fluid (a preliminary report) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229292
求助须知:如何正确求助?哪些是违规求助? 2877036
关于积分的说明 8197538
捐赠科研通 2544353
什么是DOI,文献DOI怎么找? 1374356
科研通“疑难数据库(出版商)”最低求助积分说明 646935
邀请新用户注册赠送积分活动 621742