Online computation offloading with double reinforcement learning algorithm in mobile edge computing

计算机科学 强化学习 计算 计算卸载 移动边缘计算 算法 GSM演进的增强数据速率 边缘计算 人工智能
作者
Linbo Liao,Yongxuan Lai,Fan Yang,Wenhua Zeng
出处
期刊:Journal of Parallel and Distributed Computing [Elsevier]
卷期号:171: 28-39 被引量:4
标识
DOI:10.1016/j.jpdc.2022.09.006
摘要

Smart mobile devices have recently emerged as a promising computing platform for computation tasks. However, the task performance is restricted by the computing power and battery capacity of mobile devices. Mobile edge computing, an extension of cloud computing, solves this problem well by providing computational support to mobile devices. In this paper, we discuss a mobile edge computing system with a server and multiple mobile devices that need to perform computation tasks with priorities. The limited resources of the mobile edge computing server and mobile device make it challenging to develop an offloading strategy to minimize both delay and energy consumption in the long term. To this end, an online algorithm is proposed, namely, the double reinforcement learning computation offloading (DRLCO) algorithm, which jointly decides the offloading decision, the CPU frequency, and transmit power for computation offloading. Concretely, we first formulate the power scheduling problem for mobile users to minimize energy consumption. Inspired by reinforcement learning, we solve the problem by presenting a power scheduling algorithm based on the deep deterministic policy gradient (DDPG). Then, we model the task offloading problem to minimize the delay of tasks and propose a double Deep Q-networks (DQN) based algorithm. In the decision-making process, we fully consider the influence of task queue information, channel state information, and task information. Moreover, we propose an adaptive prioritized experience replay algorithm to improve the model training efficiency. We conduct extensive simulations to verify the effectiveness of the scheme, and the simulation results show that compared with the conventional schemes, our method reduces the delay by 48% and the energy consumption by 53%. • An online computing offload model for mobile edge computing system. • Based on double DQN and DDPG to reduce delay and energy consumption. • An adaptive prioritized experience replay algorithm to improve training efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助uncle采纳,获得10
刚刚
刚刚
1秒前
1秒前
GGZ完成签到,获得积分10
1秒前
多多发布了新的文献求助30
2秒前
憨憨完成签到,获得积分20
2秒前
3秒前
健忘的蓉完成签到 ,获得积分10
3秒前
cshuijun完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
喃喃发布了新的文献求助10
5秒前
5秒前
弹指一挥间完成签到,获得积分10
5秒前
碧蓝丹烟发布了新的文献求助10
5秒前
wanci应助咖啡不加糖采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
qian发布了新的文献求助10
6秒前
ccamellia完成签到,获得积分10
6秒前
6秒前
τ涛完成签到,获得积分10
6秒前
沉默的倔驴应助moya采纳,获得10
8秒前
8秒前
hhh发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
9秒前
訫藍完成签到,获得积分10
9秒前
cshuijun发布了新的文献求助10
10秒前
11秒前
11秒前
zt完成签到,获得积分10
11秒前
Orange应助小学僧采纳,获得10
11秒前
殷勤的帽子完成签到,获得积分10
12秒前
吴宵完成签到,获得积分0
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5766583
求助须知:如何正确求助?哪些是违规求助? 5565915
关于积分的说明 15413051
捐赠科研通 4900745
什么是DOI,文献DOI怎么找? 2636655
邀请新用户注册赠送积分活动 1584854
关于科研通互助平台的介绍 1540082