Online computation offloading with double reinforcement learning algorithm in mobile edge computing

计算机科学 强化学习 计算 计算卸载 移动边缘计算 算法 GSM演进的增强数据速率 边缘计算 人工智能
作者
Linbo Liao,Yongxuan Lai,Fan Yang,Wenhua Zeng
出处
期刊:Journal of Parallel and Distributed Computing [Elsevier]
卷期号:171: 28-39 被引量:4
标识
DOI:10.1016/j.jpdc.2022.09.006
摘要

Smart mobile devices have recently emerged as a promising computing platform for computation tasks. However, the task performance is restricted by the computing power and battery capacity of mobile devices. Mobile edge computing, an extension of cloud computing, solves this problem well by providing computational support to mobile devices. In this paper, we discuss a mobile edge computing system with a server and multiple mobile devices that need to perform computation tasks with priorities. The limited resources of the mobile edge computing server and mobile device make it challenging to develop an offloading strategy to minimize both delay and energy consumption in the long term. To this end, an online algorithm is proposed, namely, the double reinforcement learning computation offloading (DRLCO) algorithm, which jointly decides the offloading decision, the CPU frequency, and transmit power for computation offloading. Concretely, we first formulate the power scheduling problem for mobile users to minimize energy consumption. Inspired by reinforcement learning, we solve the problem by presenting a power scheduling algorithm based on the deep deterministic policy gradient (DDPG). Then, we model the task offloading problem to minimize the delay of tasks and propose a double Deep Q-networks (DQN) based algorithm. In the decision-making process, we fully consider the influence of task queue information, channel state information, and task information. Moreover, we propose an adaptive prioritized experience replay algorithm to improve the model training efficiency. We conduct extensive simulations to verify the effectiveness of the scheme, and the simulation results show that compared with the conventional schemes, our method reduces the delay by 48% and the energy consumption by 53%. • An online computing offload model for mobile edge computing system. • Based on double DQN and DDPG to reduce delay and energy consumption. • An adaptive prioritized experience replay algorithm to improve training efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Leofar完成签到 ,获得积分10
刚刚
bjr完成签到 ,获得积分10
刚刚
tg2024完成签到 ,获得积分10
1秒前
wph完成签到,获得积分10
1秒前
2秒前
航行天下完成签到 ,获得积分10
2秒前
香樟遗完成签到 ,获得积分10
3秒前
BaronR完成签到,获得积分10
3秒前
scitiancai完成签到,获得积分10
4秒前
4秒前
风-FBDD完成签到,获得积分10
5秒前
虫虫冲呀冲完成签到 ,获得积分10
5秒前
bio-tang完成签到,获得积分10
6秒前
Augusterny完成签到 ,获得积分10
6秒前
酷波er应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
甄遥完成签到,获得积分10
7秒前
拓海发布了新的文献求助10
9秒前
小蘑菇噢噢噢完成签到,获得积分10
9秒前
yukang完成签到,获得积分10
11秒前
机智的白猫完成签到 ,获得积分10
13秒前
感性的神级完成签到,获得积分10
15秒前
YK完成签到,获得积分10
16秒前
jason0023完成签到,获得积分10
17秒前
hsrlbc完成签到,获得积分10
18秒前
平常的梦完成签到,获得积分10
19秒前
XIAO完成签到,获得积分10
20秒前
水本无忧87完成签到,获得积分10
21秒前
郭自同完成签到,获得积分10
21秒前
mmmaosheng应助猪猪hero采纳,获得10
22秒前
清浅溪完成签到 ,获得积分10
24秒前
可爱的函函应助寻绿采纳,获得10
25秒前
25秒前
26秒前
南城以南完成签到,获得积分10
27秒前
净禅完成签到 ,获得积分10
27秒前
guishouyu完成签到,获得积分10
28秒前
JJ完成签到 ,获得积分10
28秒前
苗苗043完成签到,获得积分10
28秒前
Joseph完成签到,获得积分10
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466849
求助须知:如何正确求助?哪些是违规求助? 3059733
关于积分的说明 9067476
捐赠科研通 2750209
什么是DOI,文献DOI怎么找? 1509108
科研通“疑难数据库(出版商)”最低求助积分说明 697126
邀请新用户注册赠送积分活动 696923