已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Online computation offloading with double reinforcement learning algorithm in mobile edge computing

计算机科学 强化学习 计算 计算卸载 移动边缘计算 算法 GSM演进的增强数据速率 边缘计算 人工智能
作者
Linbo Liao,Yongxuan Lai,Fan Yang,Wenhua Zeng
出处
期刊:Journal of Parallel and Distributed Computing [Elsevier]
卷期号:171: 28-39 被引量:4
标识
DOI:10.1016/j.jpdc.2022.09.006
摘要

Smart mobile devices have recently emerged as a promising computing platform for computation tasks. However, the task performance is restricted by the computing power and battery capacity of mobile devices. Mobile edge computing, an extension of cloud computing, solves this problem well by providing computational support to mobile devices. In this paper, we discuss a mobile edge computing system with a server and multiple mobile devices that need to perform computation tasks with priorities. The limited resources of the mobile edge computing server and mobile device make it challenging to develop an offloading strategy to minimize both delay and energy consumption in the long term. To this end, an online algorithm is proposed, namely, the double reinforcement learning computation offloading (DRLCO) algorithm, which jointly decides the offloading decision, the CPU frequency, and transmit power for computation offloading. Concretely, we first formulate the power scheduling problem for mobile users to minimize energy consumption. Inspired by reinforcement learning, we solve the problem by presenting a power scheduling algorithm based on the deep deterministic policy gradient (DDPG). Then, we model the task offloading problem to minimize the delay of tasks and propose a double Deep Q-networks (DQN) based algorithm. In the decision-making process, we fully consider the influence of task queue information, channel state information, and task information. Moreover, we propose an adaptive prioritized experience replay algorithm to improve the model training efficiency. We conduct extensive simulations to verify the effectiveness of the scheme, and the simulation results show that compared with the conventional schemes, our method reduces the delay by 48% and the energy consumption by 53%. • An online computing offload model for mobile edge computing system. • Based on double DQN and DDPG to reduce delay and energy consumption. • An adaptive prioritized experience replay algorithm to improve training efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ykesl发布了新的文献求助10
刚刚
rrrrrrry发布了新的文献求助10
3秒前
科研通AI2S应助LALA采纳,获得10
5秒前
传奇3应助思辰。采纳,获得10
6秒前
家欣完成签到,获得积分10
8秒前
可爱的函函应助李大白采纳,获得10
9秒前
胖胖的江鸟完成签到 ,获得积分10
9秒前
9秒前
乐乐应助Ykesl采纳,获得10
12秒前
火山应助Daniel采纳,获得30
13秒前
19秒前
23秒前
LALA发布了新的文献求助10
24秒前
古惑仔发布了新的文献求助30
25秒前
26秒前
坚强觅珍完成签到 ,获得积分10
27秒前
李大白完成签到,获得积分10
28秒前
28秒前
30秒前
MRD完成签到,获得积分10
32秒前
李大白发布了新的文献求助10
33秒前
LALA发布了新的文献求助10
35秒前
宣灵薇完成签到,获得积分0
35秒前
35秒前
36秒前
37秒前
月亮很亮完成签到,获得积分10
38秒前
冷傲曼冬发布了新的文献求助10
40秒前
13656479046发布了新的文献求助10
41秒前
rrrrrrry发布了新的文献求助20
42秒前
orixero应助尘曦采纳,获得10
42秒前
sadh2完成签到 ,获得积分10
42秒前
月亮很亮发布了新的文献求助10
44秒前
48秒前
嘿嘿应助南风知哀意采纳,获得10
48秒前
49秒前
rrrrrrry发布了新的文献求助10
53秒前
荔枝发布了新的文献求助10
54秒前
55秒前
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595590
求助须知:如何正确求助?哪些是违规求助? 4680876
关于积分的说明 14817799
捐赠科研通 4650797
什么是DOI,文献DOI怎么找? 2535516
邀请新用户注册赠送积分活动 1503487
关于科研通互助平台的介绍 1469726