Graph Contrastive Learning with Adaptive Augmentation for Recommendation

计算机科学 图形 人工智能 自然语言处理 心理学 理论计算机科学
作者
Mengyuan Jing,Yanmin Zhu,Tianzi Zang,Jiadi Yu,Feilong Tang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 590-605 被引量:2
标识
DOI:10.1007/978-3-031-26387-3_36
摘要

Graph Convolutional Network (GCN) has been one of the most popular technologies in recommender systems, as it can effectively model high-order relationships. However, these methods usually suffer from two problems: sparse supervision signal and noisy interactions. To address these problems, graph contrastive learning is applied for GCN-based recommendation. The general framework of graph contrastive learning is first to perform data augmentation on the input graph to get two graph views and then maximize the agreement of representations in these views. Despite the effectiveness, existing methods ignore the differences in the impact of nodes and edges when performing data augmentation, which will degrade the quality of the learned representations. Meanwhile, they usually adopt manual data augmentation schemes, limiting the generalization of models. We argue that the data augmentation scheme should be learnable and adaptive to the inherent patterns in the graph structure. Thus, the model can learn representations that remain invariant to perturbations of unimportant structures while demanding fewer resources. In this work, we propose a novel Graph Contrastive learning framework with Adaptive data augmentation for Recommendation (GCARec). Specifically, for adaptive augmentation, we first calculate the retaining probability of each edge based on the attention mechanism and then sample edges according to the probability with a Gumbel Softmax. In addition, the adaptive data augmentation scheme is based on the neural network and requires no domain knowledge, making it learnable and generalizable. Extensive experiments on three real-world datasets show that GCARec outperforms state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
包凡之发布了新的文献求助10
1秒前
teni发布了新的文献求助10
2秒前
打打应助无限梦蕊采纳,获得10
3秒前
乔木自燃发布了新的文献求助10
4秒前
wdd发布了新的文献求助10
4秒前
温柔柜子完成签到,获得积分10
6秒前
wryyyn发布了新的文献求助10
7秒前
浮游应助努力采纳,获得10
8秒前
CipherSage应助小6s采纳,获得10
11秒前
ccx981166完成签到,获得积分10
11秒前
阔达白凡完成签到,获得积分10
11秒前
慕青应助土豆泥巧克力采纳,获得10
12秒前
12秒前
情怀应助CYT采纳,获得10
14秒前
端庄白开水完成签到,获得积分10
16秒前
哈基米德举报鹤辞云归求助涉嫌违规
17秒前
xiaoyang发布了新的文献求助10
17秒前
美丽的冰枫完成签到,获得积分10
19秒前
无限梦蕊完成签到,获得积分20
19秒前
爆米花应助忧伤的书易采纳,获得10
19秒前
浮游应助CXS采纳,获得10
20秒前
liuhulang完成签到,获得积分20
20秒前
小6s完成签到,获得积分10
21秒前
大模型应助Ruoru采纳,获得10
22秒前
哈基米德应助冰巧采纳,获得20
22秒前
22秒前
23秒前
wenxiangou发布了新的文献求助10
25秒前
杨乐多发布了新的文献求助10
25秒前
义气的断秋完成签到,获得积分10
25秒前
27秒前
27秒前
28秒前
xiaolei完成签到 ,获得积分10
28秒前
alho完成签到 ,获得积分10
29秒前
卫尔摩斯完成签到,获得积分20
30秒前
30秒前
好好发布了新的文献求助10
31秒前
CYT发布了新的文献求助10
32秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5196755
求助须知:如何正确求助?哪些是违规求助? 4378345
关于积分的说明 13636034
捐赠科研通 4233859
什么是DOI,文献DOI怎么找? 2322459
邀请新用户注册赠送积分活动 1320610
关于科研通互助平台的介绍 1271010