Graph Contrastive Learning with Adaptive Augmentation for Recommendation

计算机科学 图形 人工智能 自然语言处理 心理学 理论计算机科学
作者
Mengyuan Jing,Yanmin Zhu,Tianzi Zang,Jiadi Yu,Feilong Tang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 590-605 被引量:2
标识
DOI:10.1007/978-3-031-26387-3_36
摘要

Graph Convolutional Network (GCN) has been one of the most popular technologies in recommender systems, as it can effectively model high-order relationships. However, these methods usually suffer from two problems: sparse supervision signal and noisy interactions. To address these problems, graph contrastive learning is applied for GCN-based recommendation. The general framework of graph contrastive learning is first to perform data augmentation on the input graph to get two graph views and then maximize the agreement of representations in these views. Despite the effectiveness, existing methods ignore the differences in the impact of nodes and edges when performing data augmentation, which will degrade the quality of the learned representations. Meanwhile, they usually adopt manual data augmentation schemes, limiting the generalization of models. We argue that the data augmentation scheme should be learnable and adaptive to the inherent patterns in the graph structure. Thus, the model can learn representations that remain invariant to perturbations of unimportant structures while demanding fewer resources. In this work, we propose a novel Graph Contrastive learning framework with Adaptive data augmentation for Recommendation (GCARec). Specifically, for adaptive augmentation, we first calculate the retaining probability of each edge based on the attention mechanism and then sample edges according to the probability with a Gumbel Softmax. In addition, the adaptive data augmentation scheme is based on the neural network and requires no domain knowledge, making it learnable and generalizable. Extensive experiments on three real-world datasets show that GCARec outperforms state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Leohp完成签到,获得积分10
1秒前
闪闪的从梦完成签到,获得积分10
3秒前
世佳何完成签到,获得积分10
5秒前
Gen_cexon发布了新的文献求助20
6秒前
lynn完成签到,获得积分10
6秒前
9秒前
10秒前
JL完成签到,获得积分10
12秒前
cc关闭了cc文献求助
15秒前
北欧海盗完成签到,获得积分10
17秒前
17秒前
鳗鱼凡旋发布了新的文献求助10
18秒前
可爱的函函应助孝铮采纳,获得10
18秒前
哭泣的映寒完成签到 ,获得积分10
19秒前
19秒前
清新的寄翠完成签到 ,获得积分10
20秒前
knn发布了新的文献求助10
20秒前
21秒前
22秒前
WXR0721完成签到,获得积分10
23秒前
陶火桃发布了新的文献求助10
23秒前
24秒前
25秒前
chant发布了新的文献求助10
25秒前
可爱的函函应助WXR0721采纳,获得10
27秒前
养猪大户完成签到 ,获得积分10
29秒前
科研通AI2S应助wenjian采纳,获得10
29秒前
鲁滨逊完成签到 ,获得积分10
29秒前
QYW发布了新的文献求助10
31秒前
哈儿的跟班完成签到,获得积分10
32秒前
世佳何发布了新的文献求助30
33秒前
邱曾烨完成签到,获得积分20
33秒前
暴躁的凝云完成签到,获得积分20
34秒前
心宽好运自然来完成签到,获得积分10
35秒前
陶火桃完成签到,获得积分10
36秒前
共享精神应助科研通管家采纳,获得10
38秒前
英姑应助科研通管家采纳,获得10
38秒前
香蕉觅云应助科研通管家采纳,获得10
38秒前
汉堡包应助科研通管家采纳,获得10
38秒前
今后应助科研通管家采纳,获得10
38秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137471
求助须知:如何正确求助?哪些是违规求助? 2788496
关于积分的说明 7786856
捐赠科研通 2444725
什么是DOI,文献DOI怎么找? 1300018
科研通“疑难数据库(出版商)”最低求助积分说明 625752
版权声明 601023