Graph Contrastive Learning with Adaptive Augmentation for Recommendation

计算机科学 图形 人工智能 自然语言处理 心理学 理论计算机科学
作者
Mengyuan Jing,Yanmin Zhu,Tianzi Zang,Jiadi Yu,Feilong Tang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 590-605 被引量:2
标识
DOI:10.1007/978-3-031-26387-3_36
摘要

Graph Convolutional Network (GCN) has been one of the most popular technologies in recommender systems, as it can effectively model high-order relationships. However, these methods usually suffer from two problems: sparse supervision signal and noisy interactions. To address these problems, graph contrastive learning is applied for GCN-based recommendation. The general framework of graph contrastive learning is first to perform data augmentation on the input graph to get two graph views and then maximize the agreement of representations in these views. Despite the effectiveness, existing methods ignore the differences in the impact of nodes and edges when performing data augmentation, which will degrade the quality of the learned representations. Meanwhile, they usually adopt manual data augmentation schemes, limiting the generalization of models. We argue that the data augmentation scheme should be learnable and adaptive to the inherent patterns in the graph structure. Thus, the model can learn representations that remain invariant to perturbations of unimportant structures while demanding fewer resources. In this work, we propose a novel Graph Contrastive learning framework with Adaptive data augmentation for Recommendation (GCARec). Specifically, for adaptive augmentation, we first calculate the retaining probability of each edge based on the attention mechanism and then sample edges according to the probability with a Gumbel Softmax. In addition, the adaptive data augmentation scheme is based on the neural network and requires no domain knowledge, making it learnable and generalizable. Extensive experiments on three real-world datasets show that GCARec outperforms state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
路漫漫123完成签到,获得积分10
3秒前
英俊的铭应助温暖的以旋采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
大白发布了新的文献求助20
4秒前
5秒前
ZZ发布了新的文献求助10
5秒前
马马发布了新的文献求助10
5秒前
Ss发布了新的文献求助30
5秒前
上官若男应助Nnn采纳,获得100
6秒前
7秒前
木火灰完成签到,获得积分10
7秒前
7秒前
丸丸发布了新的文献求助10
8秒前
9秒前
Ayao完成签到,获得积分10
10秒前
slx0410完成签到,获得积分10
10秒前
小紫完成签到,获得积分10
10秒前
11秒前
今后应助小小橙采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得30
11秒前
在水一方应助马马采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
烟花应助末末采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
12秒前
SYLH应助科研通管家采纳,获得30
12秒前
小二郎应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
静静应助科研通管家采纳,获得10
12秒前
12秒前
orixero应助科研通管家采纳,获得10
12秒前
彭于晏应助科研通管家采纳,获得10
12秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975816
求助须知:如何正确求助?哪些是违规求助? 3520159
关于积分的说明 11201128
捐赠科研通 3256541
什么是DOI,文献DOI怎么找? 1798347
邀请新用户注册赠送积分活动 877539
科研通“疑难数据库(出版商)”最低求助积分说明 806426