Graph Contrastive Learning with Adaptive Augmentation for Recommendation

计算机科学 图形 人工智能 自然语言处理 心理学 理论计算机科学
作者
Mengyuan Jing,Yanmin Zhu,Tianzi Zang,Jiadi Yu,Feilong Tang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 590-605 被引量:2
标识
DOI:10.1007/978-3-031-26387-3_36
摘要

Graph Convolutional Network (GCN) has been one of the most popular technologies in recommender systems, as it can effectively model high-order relationships. However, these methods usually suffer from two problems: sparse supervision signal and noisy interactions. To address these problems, graph contrastive learning is applied for GCN-based recommendation. The general framework of graph contrastive learning is first to perform data augmentation on the input graph to get two graph views and then maximize the agreement of representations in these views. Despite the effectiveness, existing methods ignore the differences in the impact of nodes and edges when performing data augmentation, which will degrade the quality of the learned representations. Meanwhile, they usually adopt manual data augmentation schemes, limiting the generalization of models. We argue that the data augmentation scheme should be learnable and adaptive to the inherent patterns in the graph structure. Thus, the model can learn representations that remain invariant to perturbations of unimportant structures while demanding fewer resources. In this work, we propose a novel Graph Contrastive learning framework with Adaptive data augmentation for Recommendation (GCARec). Specifically, for adaptive augmentation, we first calculate the retaining probability of each edge based on the attention mechanism and then sample edges according to the probability with a Gumbel Softmax. In addition, the adaptive data augmentation scheme is based on the neural network and requires no domain knowledge, making it learnable and generalizable. Extensive experiments on three real-world datasets show that GCARec outperforms state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单身的淇发布了新的文献求助10
刚刚
sunnyfriend完成签到,获得积分10
刚刚
伽娜发布了新的文献求助10
1秒前
xiayiyi发布了新的文献求助10
1秒前
领导范儿应助Jessica采纳,获得10
1秒前
2秒前
zhangkele完成签到,获得积分10
2秒前
脑洞疼应助zcs采纳,获得30
2秒前
3秒前
桐桐应助zzb采纳,获得10
3秒前
3秒前
4秒前
4秒前
4秒前
小苏打完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
典雅的俊驰应助姜晓峰采纳,获得10
5秒前
6秒前
6秒前
mei完成签到,获得积分10
6秒前
7秒前
科研小崽发布了新的文献求助10
7秒前
乒坛巨人发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
7秒前
朴实怀梦完成签到,获得积分10
8秒前
大模型应助ly采纳,获得10
8秒前
xiayiyi完成签到,获得积分10
8秒前
伽娜完成签到,获得积分10
9秒前
chenzy完成签到,获得积分10
9秒前
mei发布了新的文献求助10
9秒前
9秒前
瑶瑶发布了新的文献求助10
11秒前
12秒前
12秒前
科目三应助hua采纳,获得10
12秒前
12秒前
12秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603838
求助须知:如何正确求助?哪些是违规求助? 4012374
关于积分的说明 12423535
捐赠科研通 3692896
什么是DOI,文献DOI怎么找? 2035955
邀请新用户注册赠送积分活动 1069072
科研通“疑难数据库(出版商)”最低求助积分说明 953559