计算机科学
情态动词
稳健性(进化)
成对比较
人工智能
聚类分析
模式识别(心理学)
组分(热力学)
机器学习
数据挖掘
生物化学
化学
物理
高分子化学
基因
热力学
作者
Runhao Li,Zhenyu Weng,Huiping Zhuang,Yongming Chen,Zhiping Lin
标识
DOI:10.1109/iscas46773.2023.10181441
摘要
Cross-modal retrieval methods are developed to retrieve relevant data across different modalities. Usually, super-vised cross-modal retrieval methods can achieve higher accuracy than unsupervised methods because they can utilize the semantic information provided by clean labels. However, training data with noisy labels will lead to the performance degradation of supervised cross-modal retrieval methods. In this work, we present a novel framework called Neighborhood Learning for Cross-Modal Retrieval (NLCMR) that is robust against noisy labels by exploiting the information contained in the neighbor-hood. Our NLCMR contains two main components: Clustering with Neighborhood Alignment and Neighborhood Contrastive Learning. The first component focuses on reducing the impact of noisy labels and improving clustering robustness, and the second component learns from noisy data by exploring pairwise and neighborhood information. Extensive experiments are conducted on three multi-modal datasets to demonstrate the effectiveness of NLCMR.
科研通智能强力驱动
Strongly Powered by AbleSci AI