Automated in-season mapping of winter wheat in China with training data generation and model transfer

冬小麦 环境科学 生长季节 随机森林 训练集 培训(气象学) 预测建模 分类器(UML) 数据质量 遥感 气象学 计算机科学 人工智能 机器学习 地理 农学 工程类 生物 公制(单位) 运营管理
作者
Gaoxiang Yang,Xingrong Li,Pengzhi Liu,Xia Yao,Yan Zhu,Weixing Cao,Tao Cheng
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:202: 422-438 被引量:70
标识
DOI:10.1016/j.isprsjprs.2023.07.004
摘要

Accurate and timely information on winter wheat spatial distribution is essential for food security and environmental sustainability. However, high-quality nation-wide winter wheat products at high resolutions are still scarce around the world, and the approaches for winter wheat mapping are generally constrained by the lack of sufficient and representative training data. In this study, a knowledge-based approach based on spectral and polarization information from critical stages of winter wheat, was proposed to extract high-quality training data of winter wheat, thereby supporting winter wheat mapping with machine learning classifiers. Additionally, classification model trained by the generated training data was transferred across years to achieve the in-season mapping of winter wheat. Two-year classification scenarios based on the automated training data generation (ATDG) or model transfer (MT) were designed to evaluate the quality of automatically generated training data, the performance of model transfer, the contribution of optical and radar data, and the earliest timing for winter wheat mapping over China. With the ATDG and MT, the first 10-m resolution maps of winter wheat over China (ChinaWheat10) were produced for three consecutive years (2020 & 2021 by ATDG; 2021 & 2022 by MT). For ATDG and MT, the combined features of Sentinel-1 and Sentinel-2 yielded the highest overall accuracies with the random forest classifier. Specifically, winter wheat mapping with the ATDG achieved the highest F1-score of 0.94 for both 2020 and 2021. The MT reached a comparable F1-score of 0.94 and 0.93 for 2021 and 2022, and winter wheat maps with the F1-score of 0.93 and 0.92 could be produced as early as April (two months ahead of harvesting). Besides well-delineated winter wheat parcels, the estimated areas of ChinaWheat10 aligned well with the agricultural census data at the provincial (R2 ≥ 0.95) and municipal (R2 ≥ 0.91) levels. These findings suggest the proposed approaches have a great potential for accurate, cost-effective and high-resolution in-season mapping of winter wheat over large regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助叶白山采纳,获得10
刚刚
刚刚
啊怙纲完成签到 ,获得积分10
2秒前
HBY发布了新的文献求助10
3秒前
4秒前
ESTHERDY发布了新的文献求助10
4秒前
4秒前
1111完成签到,获得积分10
4秒前
5秒前
田様应助入变采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
vvvvvvvvvvvv111完成签到,获得积分10
7秒前
脑洞疼应助大宝君采纳,获得10
8秒前
徐籍发布了新的文献求助10
8秒前
natuer完成签到,获得积分10
9秒前
coconut完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助30
10秒前
11秒前
California完成签到 ,获得积分10
11秒前
natuer发布了新的文献求助20
12秒前
13秒前
高高烙完成签到,获得积分10
13秒前
情怀应助某人采纳,获得10
13秒前
陈航完成签到,获得积分10
14秒前
kmzzy完成签到 ,获得积分10
15秒前
15秒前
小白熊应助fu采纳,获得20
15秒前
sinlar发布了新的文献求助10
15秒前
南瓜气气完成签到,获得积分10
16秒前
Jiaox发布了新的文献求助10
17秒前
18秒前
牛牛超人完成签到,获得积分10
19秒前
杏杏发布了新的文献求助10
20秒前
传奇3应助郑泽航采纳,获得10
20秒前
潮流季关注了科研通微信公众号
20秒前
21秒前
dacre发布了新的文献求助10
21秒前
小白熊应助yy采纳,获得10
22秒前
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785393
求助须知:如何正确求助?哪些是违规求助? 5687580
关于积分的说明 15467396
捐赠科研通 4914484
什么是DOI,文献DOI怎么找? 2645216
邀请新用户注册赠送积分活动 1593054
关于科研通互助平台的介绍 1547382