Automated in-season mapping of winter wheat in China with training data generation and model transfer

冬小麦 环境科学 生长季节 随机森林 训练集 培训(气象学) 预测建模 分类器(UML) 数据质量 遥感 气象学 计算机科学 人工智能 机器学习 地理 农学 工程类 生物 公制(单位) 运营管理
作者
Gaoxiang Yang,Xingrong Li,Pengzhi Liu,Xia Yao,Yan Zhu,Weixing Cao,Tao Cheng
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:202: 422-438 被引量:70
标识
DOI:10.1016/j.isprsjprs.2023.07.004
摘要

Accurate and timely information on winter wheat spatial distribution is essential for food security and environmental sustainability. However, high-quality nation-wide winter wheat products at high resolutions are still scarce around the world, and the approaches for winter wheat mapping are generally constrained by the lack of sufficient and representative training data. In this study, a knowledge-based approach based on spectral and polarization information from critical stages of winter wheat, was proposed to extract high-quality training data of winter wheat, thereby supporting winter wheat mapping with machine learning classifiers. Additionally, classification model trained by the generated training data was transferred across years to achieve the in-season mapping of winter wheat. Two-year classification scenarios based on the automated training data generation (ATDG) or model transfer (MT) were designed to evaluate the quality of automatically generated training data, the performance of model transfer, the contribution of optical and radar data, and the earliest timing for winter wheat mapping over China. With the ATDG and MT, the first 10-m resolution maps of winter wheat over China (ChinaWheat10) were produced for three consecutive years (2020 & 2021 by ATDG; 2021 & 2022 by MT). For ATDG and MT, the combined features of Sentinel-1 and Sentinel-2 yielded the highest overall accuracies with the random forest classifier. Specifically, winter wheat mapping with the ATDG achieved the highest F1-score of 0.94 for both 2020 and 2021. The MT reached a comparable F1-score of 0.94 and 0.93 for 2021 and 2022, and winter wheat maps with the F1-score of 0.93 and 0.92 could be produced as early as April (two months ahead of harvesting). Besides well-delineated winter wheat parcels, the estimated areas of ChinaWheat10 aligned well with the agricultural census data at the provincial (R2 ≥ 0.95) and municipal (R2 ≥ 0.91) levels. These findings suggest the proposed approaches have a great potential for accurate, cost-effective and high-resolution in-season mapping of winter wheat over large regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴青发布了新的文献求助10
刚刚
1秒前
我是老大应助春树暮云采纳,获得10
1秒前
ar发布了新的文献求助10
1秒前
kouun完成签到,获得积分10
1秒前
裴裴完成签到,获得积分20
2秒前
2秒前
3秒前
学术Bond发布了新的文献求助10
3秒前
Su发布了新的文献求助10
3秒前
科研通AI6应助神勇的女孩采纳,获得10
3秒前
3秒前
FashionBoy应助ai采纳,获得10
4秒前
蓝幻雷完成签到,获得积分10
4秒前
唐黑黑发布了新的文献求助10
4秒前
苗条傲蕾完成签到,获得积分20
4秒前
李健的小迷弟应助kc采纳,获得10
4秒前
雨眠发布了新的文献求助10
5秒前
田様应助asdasdasd采纳,获得10
5秒前
科研通AI6应助初心采纳,获得20
5秒前
5秒前
5秒前
6秒前
无极微光应助蒸馏水采纳,获得20
6秒前
6秒前
6秒前
完美世界应助漂亮妙柏采纳,获得10
6秒前
科研通AI6应助ar采纳,获得10
7秒前
8秒前
英姑应助苗条傲蕾采纳,获得10
8秒前
hqy完成签到,获得积分20
8秒前
YaRu应助spacewing0216采纳,获得20
8秒前
8秒前
汉堡包应助婷婷采纳,获得30
9秒前
9秒前
10秒前
SunK1876完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588259
求助须知:如何正确求助?哪些是违规求助? 4671299
关于积分的说明 14786793
捐赠科研通 4624766
什么是DOI,文献DOI怎么找? 2531723
邀请新用户注册赠送积分活动 1500308
关于科研通互助平台的介绍 1468262