HSM-QA: Question Answering System Based on Hierarchical Semantic Matching

计算机科学 答疑 成对比较 匹配(统计) 情报检索 集合(抽象数据类型) 查询扩展 模棱两可 相关性(法律) 方案(数学) 相似性(几何) 自然语言处理 人工智能 统计 图像(数学) 数学分析 数学 程序设计语言 法学 政治学
作者
Jinlu Zhang,Jiarong He,Yiyi Zhou,Xiaoshuai Sun,Xiao Yu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 77826-77839
标识
DOI:10.1109/access.2023.3296850
摘要

In recent years, Question Answering (QA) systems have gained popularity as a means of acquiring knowledge. However, the prevalent approach of matching question-answer pairs still suffers from low precision and efficiency due to the inherent ambiguity of natural language descriptions. To address these issues, we propose a novel QA approach based on hierarchical semantic matching, termed HSM-QA. Specifically, HSM-QA is decomposed into two main steps, i.e., query-question and query-answer matchings, respectively. For query-question matching, a Siamese network is applied to calculate the similarity between query-question pairs, which recalls the most similar questions and their corresponding answers as candidates. In terms of query-answer matching, we adopt the idea of the pairwise algorithm and propose a single-stream structure to calculate the relevance between query and answer, based on which the best-matching candidates are ranked and returned. After training, these two steps are combined as an efficient QA scheme for different languages, e.g ., English and Chinese. Furthermore, to address the lack of Chinese QA datasets, we collect a massive amount of text data from Chinese social media and generate a new dataset via a pre-trained language model. Extensive experiments are conducted on six QA datasets to validate our HSM-QA. The experimental results demonstrate the superior performance and efficiency of our method than a set of compared methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
TiAmo完成签到,获得积分10
1秒前
庾天磊完成签到 ,获得积分10
1秒前
皮老八发布了新的文献求助10
1秒前
dream发布了新的文献求助10
2秒前
3秒前
4秒前
5秒前
6秒前
6秒前
6秒前
共享精神应助乐正如彤采纳,获得10
6秒前
6秒前
执笔画流年完成签到,获得积分10
9秒前
ED应助PKU摸鱼小能手采纳,获得10
9秒前
SEM小菜鸡发布了新的文献求助30
9秒前
科研小白完成签到,获得积分10
9秒前
9秒前
鸸蓝完成签到,获得积分10
10秒前
10秒前
风中的寄风完成签到,获得积分10
10秒前
脑洞疼应助霸气小土豆采纳,获得10
11秒前
linkman发布了新的文献求助10
11秒前
zhu发布了新的文献求助10
11秒前
zz完成签到,获得积分10
11秒前
猪猪hero发布了新的文献求助10
12秒前
萧七七发布了新的文献求助10
12秒前
younglsc2完成签到,获得积分10
12秒前
13秒前
逸之狐应助简祺采纳,获得20
13秒前
monsoon发布了新的文献求助10
14秒前
Jasper应助吃饱再睡采纳,获得10
14秒前
14秒前
wan完成签到,获得积分10
15秒前
sigla发布了新的文献求助10
15秒前
帅气的猫发布了新的文献求助10
16秒前
16秒前
安若发布了新的文献求助30
17秒前
18秒前
傅寻菱完成签到,获得积分10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952150
求助须知:如何正确求助?哪些是违规求助? 3497645
关于积分的说明 11088172
捐赠科研通 3228209
什么是DOI,文献DOI怎么找? 1784718
邀请新用户注册赠送积分活动 868855
科研通“疑难数据库(出版商)”最低求助积分说明 801281