已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A stacking-CRRL fusion model for predicting the bearing capacity of a steel-reinforced concrete column constrained by carbon fiber-reinforced polymer

Boosting(机器学习) 堆积 碳纤维增强聚合物 Lasso(编程语言) 随机森林 极限学习机 计算机科学 人工智能 预测建模 机器学习 模式识别(心理学) 算法 人工神经网络 核磁共振 复合数 物理 万维网
作者
Ji‐gang Zhang,Guang-chao Yang,Zhehao Ma,Guoliang Zhao,H. K. Song
出处
期刊:Structures [Elsevier BV]
卷期号:55: 1793-1804 被引量:8
标识
DOI:10.1016/j.istruc.2023.06.099
摘要

In a two-level stacking algorithm framework, a fusion model (stacking-CRRL) of categorical boosting (Catboost), random forest regression (RFR), ridge regression (RR), and Least absolute shrinkage and selection operator (LASSO) is proposed and shown to accurately predict the load capacity in axial compression of steel-reinforced concrete columns (SRCCs) clad in carbon fiber-reinforced polymer (CFRP). Sparse initial data were extended by synthetic minority oversampling in the model-building process, and 12 model input features were identified after eliminating redundant features using Spearman correlation coefficients. The prediction performance of five boosting models, two bagging models, and three traditional machine learning (ML) models were compared. The Catboost, RFR, and RR models were selected as the base learners, and LASSO regression was chosen for the meta-learner. The prediction performance of different algorithmic models before and after synthetic minority oversampling technique (SMOTE) processing is compared, and the stacking-CRRL fusion model established is compared with that of established prediction techniques. The Shapley additive explanations technique was applied and discussed the impact of input features on the bearing capacity of SRCCs. The results demonstrate that the prediction performance of the proposed stacking-CRRL fusion model surpasses that of the alternative models tested, that of a published prediction equation, and that of an Abaqus simulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
abiden完成签到,获得积分20
1秒前
白石溪发布了新的文献求助10
2秒前
CHAIZH发布了新的文献求助10
3秒前
3秒前
4秒前
舒心寒天发布了新的文献求助10
5秒前
酷波er应助科研通管家采纳,获得10
6秒前
FIN应助科研通管家采纳,获得20
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
6秒前
yydragen应助科研通管家采纳,获得30
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得30
7秒前
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
个性凝天发布了新的文献求助10
8秒前
zhouli发布了新的文献求助10
8秒前
老板娘完成签到 ,获得积分10
11秒前
SciGPT应助十一苗采纳,获得10
14秒前
16秒前
椒盐完成签到,获得积分10
17秒前
搜集达人应助shinn采纳,获得10
18秒前
忧虑的羊完成签到 ,获得积分10
18秒前
WTQ完成签到,获得积分10
19秒前
20秒前
20秒前
SciGPT应助善良语风采纳,获得10
23秒前
NexusExplorer应助Ricky采纳,获得10
24秒前
十一苗发布了新的文献求助10
26秒前
27秒前
东方秦兰发布了新的文献求助10
28秒前
32秒前
32秒前
斯佳丽奥哈拉给斯佳丽奥哈拉的求助进行了留言
33秒前
33秒前
科研通AI2S应助淡定的半梦采纳,获得10
35秒前
科研通AI5应助kelvin采纳,获得80
35秒前
37秒前
wanci应助墨倾池采纳,获得10
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968024
求助须知:如何正确求助?哪些是违规求助? 3513050
关于积分的说明 11166224
捐赠科研通 3248224
什么是DOI,文献DOI怎么找? 1794124
邀请新用户注册赠送积分活动 874880
科研通“疑难数据库(出版商)”最低求助积分说明 804610