A stacking-CRRL fusion model for predicting the bearing capacity of a steel-reinforced concrete column constrained by carbon fiber-reinforced polymer

Boosting(机器学习) 堆积 碳纤维增强聚合物 Lasso(编程语言) 随机森林 极限学习机 计算机科学 人工智能 预测建模 机器学习 模式识别(心理学) 算法 人工神经网络 核磁共振 复合数 物理 万维网
作者
Ji‐gang Zhang,Guang-chao Yang,Zhehao Ma,Guoliang Zhao,H. K. Song
出处
期刊:Structures [Elsevier BV]
卷期号:55: 1793-1804 被引量:8
标识
DOI:10.1016/j.istruc.2023.06.099
摘要

In a two-level stacking algorithm framework, a fusion model (stacking-CRRL) of categorical boosting (Catboost), random forest regression (RFR), ridge regression (RR), and Least absolute shrinkage and selection operator (LASSO) is proposed and shown to accurately predict the load capacity in axial compression of steel-reinforced concrete columns (SRCCs) clad in carbon fiber-reinforced polymer (CFRP). Sparse initial data were extended by synthetic minority oversampling in the model-building process, and 12 model input features were identified after eliminating redundant features using Spearman correlation coefficients. The prediction performance of five boosting models, two bagging models, and three traditional machine learning (ML) models were compared. The Catboost, RFR, and RR models were selected as the base learners, and LASSO regression was chosen for the meta-learner. The prediction performance of different algorithmic models before and after synthetic minority oversampling technique (SMOTE) processing is compared, and the stacking-CRRL fusion model established is compared with that of established prediction techniques. The Shapley additive explanations technique was applied and discussed the impact of input features on the bearing capacity of SRCCs. The results demonstrate that the prediction performance of the proposed stacking-CRRL fusion model surpasses that of the alternative models tested, that of a published prediction equation, and that of an Abaqus simulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
代怡发布了新的文献求助10
1秒前
coco发布了新的文献求助10
1秒前
xxb要发sci完成签到,获得积分10
1秒前
wy发布了新的文献求助10
1秒前
英俊的铭应助啦啦啦采纳,获得10
2秒前
2秒前
老刀发布了新的文献求助30
2秒前
zzzz发布了新的文献求助10
2秒前
有魅力的傲松关注了科研通微信公众号
2秒前
3秒前
4秒前
老福贵儿应助ZHAOyifan采纳,获得30
5秒前
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
LS发布了新的文献求助20
7秒前
温柔柜子应助ceeray23采纳,获得30
7秒前
linghanlan完成签到,获得积分10
8秒前
feb发布了新的文献求助10
8秒前
陈牛逼完成签到 ,获得积分10
8秒前
子新发布了新的文献求助10
9秒前
酷波er应助谷蓝采纳,获得10
9秒前
金金完成签到,获得积分10
9秒前
领导范儿应助多情嘉懿采纳,获得10
10秒前
11秒前
丸橙发布了新的文献求助10
11秒前
传奇3应助wy采纳,获得10
11秒前
852应助炙热晓露采纳,获得10
11秒前
潮鸣完成签到 ,获得积分10
12秒前
啦啦啦完成签到,获得积分20
12秒前
gzh关闭了gzh文献求助
12秒前
12秒前
13秒前
14秒前
柯凌完成签到 ,获得积分20
14秒前
14秒前
15秒前
八九完成签到,获得积分20
15秒前
犹豫草莓完成签到,获得积分10
15秒前
mama完成签到 ,获得积分10
15秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5144025
求助须知:如何正确求助?哪些是违规求助? 4341830
关于积分的说明 13521491
捐赠科研通 4182277
什么是DOI,文献DOI怎么找? 2293363
邀请新用户注册赠送积分活动 1293893
关于科研通互助平台的介绍 1236661