清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A stacking-CRRL fusion model for predicting the bearing capacity of a steel-reinforced concrete column constrained by carbon fiber-reinforced polymer

Boosting(机器学习) 堆积 碳纤维增强聚合物 Lasso(编程语言) 随机森林 极限学习机 计算机科学 人工智能 预测建模 机器学习 模式识别(心理学) 算法 人工神经网络 核磁共振 复合数 物理 万维网
作者
Ji‐gang Zhang,Guang-chao Yang,Zhehao Ma,Guoliang Zhao,H. K. Song
出处
期刊:Structures [Elsevier BV]
卷期号:55: 1793-1804 被引量:8
标识
DOI:10.1016/j.istruc.2023.06.099
摘要

In a two-level stacking algorithm framework, a fusion model (stacking-CRRL) of categorical boosting (Catboost), random forest regression (RFR), ridge regression (RR), and Least absolute shrinkage and selection operator (LASSO) is proposed and shown to accurately predict the load capacity in axial compression of steel-reinforced concrete columns (SRCCs) clad in carbon fiber-reinforced polymer (CFRP). Sparse initial data were extended by synthetic minority oversampling in the model-building process, and 12 model input features were identified after eliminating redundant features using Spearman correlation coefficients. The prediction performance of five boosting models, two bagging models, and three traditional machine learning (ML) models were compared. The Catboost, RFR, and RR models were selected as the base learners, and LASSO regression was chosen for the meta-learner. The prediction performance of different algorithmic models before and after synthetic minority oversampling technique (SMOTE) processing is compared, and the stacking-CRRL fusion model established is compared with that of established prediction techniques. The Shapley additive explanations technique was applied and discussed the impact of input features on the bearing capacity of SRCCs. The results demonstrate that the prediction performance of the proposed stacking-CRRL fusion model surpasses that of the alternative models tested, that of a published prediction equation, and that of an Abaqus simulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灿烂而孤独的八戒完成签到 ,获得积分0
6秒前
量子星尘发布了新的文献求助10
7秒前
19秒前
BinBlues完成签到,获得积分10
19秒前
24秒前
39秒前
vicky完成签到 ,获得积分10
54秒前
冷傲半邪完成签到,获得积分10
1分钟前
1分钟前
nuliguan完成签到 ,获得积分10
1分钟前
1分钟前
激动的似狮完成签到,获得积分10
1分钟前
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
zpc猪猪完成签到,获得积分10
2分钟前
2分钟前
fabius0351完成签到 ,获得积分10
2分钟前
如歌完成签到,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
003发布了新的社区帖子
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
5分钟前
Archer发布了新的文献求助10
6分钟前
彭于晏应助003采纳,获得10
6分钟前
6分钟前
003发布了新的文献求助10
6分钟前
6分钟前
量子星尘发布了新的文献求助30
6分钟前
Archer完成签到,获得积分10
7分钟前
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596369
求助须知:如何正确求助?哪些是违规求助? 4008305
关于积分的说明 12409093
捐赠科研通 3687302
什么是DOI,文献DOI怎么找? 2032309
邀请新用户注册赠送积分活动 1065560
科研通“疑难数据库(出版商)”最低求助积分说明 950863