A stacking-CRRL fusion model for predicting the bearing capacity of a steel-reinforced concrete column constrained by carbon fiber-reinforced polymer

Boosting(机器学习) 堆积 碳纤维增强聚合物 Lasso(编程语言) 随机森林 极限学习机 计算机科学 人工智能 预测建模 机器学习 模式识别(心理学) 算法 人工神经网络 物理 核磁共振 复合数 万维网
作者
Ji‐gang Zhang,Guang-chao Yang,Zhehao Ma,Guoliang Zhao,H. K. Song
出处
期刊:Structures [Elsevier]
卷期号:55: 1793-1804 被引量:8
标识
DOI:10.1016/j.istruc.2023.06.099
摘要

In a two-level stacking algorithm framework, a fusion model (stacking-CRRL) of categorical boosting (Catboost), random forest regression (RFR), ridge regression (RR), and Least absolute shrinkage and selection operator (LASSO) is proposed and shown to accurately predict the load capacity in axial compression of steel-reinforced concrete columns (SRCCs) clad in carbon fiber-reinforced polymer (CFRP). Sparse initial data were extended by synthetic minority oversampling in the model-building process, and 12 model input features were identified after eliminating redundant features using Spearman correlation coefficients. The prediction performance of five boosting models, two bagging models, and three traditional machine learning (ML) models were compared. The Catboost, RFR, and RR models were selected as the base learners, and LASSO regression was chosen for the meta-learner. The prediction performance of different algorithmic models before and after synthetic minority oversampling technique (SMOTE) processing is compared, and the stacking-CRRL fusion model established is compared with that of established prediction techniques. The Shapley additive explanations technique was applied and discussed the impact of input features on the bearing capacity of SRCCs. The results demonstrate that the prediction performance of the proposed stacking-CRRL fusion model surpasses that of the alternative models tested, that of a published prediction equation, and that of an Abaqus simulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
关中大侠的涮肉坊完成签到,获得积分10
刚刚
刚刚
肚子好e啊完成签到 ,获得积分10
1秒前
夜神月发布了新的文献求助10
2秒前
Genius完成签到,获得积分10
2秒前
3秒前
英姑应助亦玉采纳,获得10
3秒前
wdddr发布了新的文献求助10
5秒前
Davidjun完成签到,获得积分10
5秒前
6秒前
6秒前
王乾宇完成签到,获得积分10
7秒前
7秒前
科研通AI2S应助很好采纳,获得10
8秒前
嘻嘻哈哈应助Tutu采纳,获得10
10秒前
彭于晏应助zhang采纳,获得10
10秒前
Peyton Why完成签到,获得积分10
10秒前
10秒前
浮游应助年轻的绿凝采纳,获得30
10秒前
CodeCraft应助森葵采纳,获得10
11秒前
11秒前
浮游应助瓜瓜采纳,获得10
12秒前
14秒前
最佳发布了新的文献求助30
14秒前
14秒前
清欢昌丽发布了新的文献求助10
14秒前
共享精神应助huangduanku采纳,获得10
14秒前
15秒前
16秒前
duyuqing完成签到 ,获得积分10
16秒前
CDQ完成签到,获得积分10
18秒前
sly完成签到,获得积分10
19秒前
19秒前
木沐发布了新的文献求助10
19秒前
Orange应助尊敬谷波采纳,获得10
19秒前
20秒前
琪琪发布了新的文献求助10
21秒前
小号完成签到,获得积分10
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5308512
求助须知:如何正确求助?哪些是违规求助? 4453661
关于积分的说明 13857726
捐赠科研通 4341377
什么是DOI,文献DOI怎么找? 2383861
邀请新用户注册赠送积分活动 1378491
关于科研通互助平台的介绍 1346482