Effective sample pairs based contrastive learning for clustering

聚类分析 人工智能 计算机科学 样品(材料) 模式识别(心理学) 差异(会计) 构造(python库) 特征(语言学) 假阳性悖论 k-最近邻算法 深度学习 自然语言处理 机器学习 语言学 化学 哲学 会计 色谱法 业务 程序设计语言
作者
Jun Yin,Haowei Wu,Shiliang Sun
出处
期刊:Information Fusion [Elsevier]
卷期号:99: 101899-101899 被引量:31
标识
DOI:10.1016/j.inffus.2023.101899
摘要

As an indispensable branch of unsupervised learning, deep clustering is rapidly emerging along with the growth of deep neural networks. Recently, contrastive learning paradigm has been combined with deep clustering to achieve more competitive performance. However, previous works mostly employ random augmentations to construct sample pairs for contrastive clustering. Different augmentations of a sample are treated as positive sample pairs, which may result in false positives and ignore the semantic variations of different samples. To address these limitations, we present a novel end-to-end contrastive clustering framework termed Contrastive Clustering with Effective Sample pairs construction (CCES), which obtains more semantic information by jointly leveraging an effective data augmentation method ContrastiveCrop and constructing positive sample pairs based on nearest-neighbor mining. Specifically, we augment original samples by adopting ContrastiveCrop, which explicitly reduces false positives and enlarges the variance of samples. Further, with the extracted feature representations, we provide a strategy to construct positive sample pairs via a sample and its nearest neighbor for instance-wise and cluster-wise contrastive learning. Experimental results on four challenging datasets demonstrate the effectiveness of CCES for clustering, which surpasses the state-of-the-art deep clustering methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谷贝贝完成签到,获得积分10
9秒前
XNt完成签到 ,获得积分10
16秒前
凑个数完成签到 ,获得积分10
20秒前
海皇星空完成签到 ,获得积分10
21秒前
liusoojoo完成签到,获得积分10
27秒前
27秒前
30秒前
30秒前
31秒前
31秒前
小小美发布了新的文献求助10
31秒前
31秒前
31秒前
31秒前
31秒前
31秒前
Owen应助科研通管家采纳,获得10
31秒前
31秒前
蓝天应助科研通管家采纳,获得10
31秒前
Owen应助科研通管家采纳,获得10
31秒前
顾矜应助科研通管家采纳,获得10
31秒前
蓝天应助科研通管家采纳,获得10
31秒前
顾矜应助科研通管家采纳,获得10
31秒前
月下荷花完成签到 ,获得积分10
31秒前
SciGPT应助科研通管家采纳,获得10
32秒前
charint应助科研通管家采纳,获得10
32秒前
桐桐应助科研通管家采纳,获得10
32秒前
SPARK应助科研通管家采纳,获得10
32秒前
JamesPei应助科研通管家采纳,获得10
32秒前
SPARK应助科研通管家采纳,获得10
32秒前
深情安青应助科研通管家采纳,获得10
32秒前
SPARK应助科研通管家采纳,获得10
32秒前
33秒前
34秒前
Mwwww完成签到 ,获得积分10
35秒前
调皮薯片发布了新的文献求助10
40秒前
41秒前
Danielle完成签到,获得积分10
43秒前
001026Z完成签到,获得积分10
43秒前
狸猫完成签到 ,获得积分10
44秒前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5851979
求助须知:如何正确求助?哪些是违规求助? 6275055
关于积分的说明 15627539
捐赠科研通 4967924
什么是DOI,文献DOI怎么找? 2678842
邀请新用户注册赠送积分活动 1623057
关于科研通互助平台的介绍 1579488