亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TransDose: Transformer-based radiotherapy dose prediction from CT images guided by super-pixel-level GCN classification

计算机科学 人工智能 分割 概化理论 像素 放射治疗计划 深度学习 模式识别(心理学) 放射治疗 医学 数学 放射科 统计
作者
Zhengyang Jiao,Xingchen Peng,Yan Wang,Jianghong Xiao,Dong Nie,Xi Wu,Xin Wang,Jiliu Zhou,Dinggang Shen
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:89: 102902-102902 被引量:15
标识
DOI:10.1016/j.media.2023.102902
摘要

Radiotherapy is a mainstay treatment for cancer in clinic. An excellent radiotherapy treatment plan is always based on a high-quality dose distribution map which is produced by repeated manual trial-and-errors of experienced experts. To accelerate the radiotherapy planning process, many automatic dose distribution prediction methods have been proposed recently and achieved considerable fruits. Nevertheless, these methods require certain auxiliary inputs besides CT images, such as segmentation masks of the tumor and organs at risk (OARs), which limits their prediction efficiency and application potential. To address this issue, we design a novel approach named as TransDose for dose distribution prediction that treats CT images as the unique input in this paper. Specifically, instead of inputting the segmentation masks to provide the prior anatomical information, we utilize a super-pixel-based graph convolutional network (GCN) to extract category-specific features, thereby compensating the network for the necessary anatomical knowledge. Besides, considering the strong continuous dependency between adjacent CT slices as well as adjacent dose maps, we embed the Transformer into the backbone, and make use of its superior ability of long-range sequence modeling to endow input features with inter-slice continuity message. To our knowledge, this is the first network that specially designed for the task of dose prediction from only CT images without ignoring necessary anatomical structure. Finally, we evaluate our model on two real datasets, and extensive experiments demonstrate the generalizability and advantages of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助酚酞v采纳,获得10
28秒前
在水一方完成签到 ,获得积分0
1分钟前
奔跑的蒲公英完成签到,获得积分10
1分钟前
123456完成签到,获得积分0
1分钟前
KY Mr.WANG完成签到,获得积分10
1分钟前
吕半鬼完成签到,获得积分10
1分钟前
拜托你清醒一点完成签到 ,获得积分10
1分钟前
2分钟前
阿明发布了新的文献求助10
2分钟前
感动白开水完成签到,获得积分10
2分钟前
无花果应助阿明采纳,获得30
2分钟前
顾矜应助季1采纳,获得10
2分钟前
2分钟前
外向板栗发布了新的文献求助10
3分钟前
3分钟前
季1发布了新的文献求助10
3分钟前
英姑应助季1采纳,获得10
3分钟前
3分钟前
LULU发布了新的文献求助10
3分钟前
4分钟前
Georgechan完成签到,获得积分10
4分钟前
4分钟前
二三发布了新的文献求助10
4分钟前
上官若男应助雪巧采纳,获得10
5分钟前
雪巧完成签到,获得积分10
5分钟前
5分钟前
雪巧发布了新的文献求助10
5分钟前
研友_VZG7GZ应助雪巧采纳,获得10
5分钟前
7分钟前
kalala发布了新的文献求助10
7分钟前
8分钟前
希望天下0贩的0应助kalala采纳,获得10
8分钟前
阿明发布了新的文献求助30
8分钟前
小young完成签到 ,获得积分10
8分钟前
8分钟前
licnyu发布了新的文献求助50
8分钟前
monair完成签到 ,获得积分10
9分钟前
9分钟前
哭泣秋蝶完成签到,获得积分10
9分钟前
哭泣秋蝶发布了新的文献求助10
9分钟前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3126107
求助须知:如何正确求助?哪些是违规求助? 2776278
关于积分的说明 7729751
捐赠科研通 2431767
什么是DOI,文献DOI怎么找? 1292236
科研通“疑难数据库(出版商)”最低求助积分说明 622609
版权声明 600392