3D VSG: Long-term Semantic Scene Change Prediction through 3D Variable Scene Graphs

期限(时间) 计算机科学 变量(数学) 人工智能 场景图 计算机视觉 数学 天文 渲染(计算机图形) 物理 数学分析
作者
Samuel Looper,Javier Rodríguez-Puigvert,Roland Siegwart,César Cadena,Lukas Schmid
标识
DOI:10.1109/icra48891.2023.10161212
摘要

Numerous applications require robots to operate in environments shared with other agents, such as humans or other robots. However, such shared scenes are typically subject to different kinds of long-term semantic scene changes. The ability to model and predict such changes is thus crucial for robot autonomy. In this work, we formalize the task of semantic scene variability estimation and identify three main varieties of semantic scene change: changes in the position of an object, its semantic state, or the composition of a scene as a whole. To represent this variability, we propose the Variable Scene Graph (VSG), which augments existing 3D Scene Graph (SG) representations with the variability attribute, representing the likelihood of discrete long-term change events. We present a novel method, DeltaVSG, to estimate the variability of VSGs in a supervised fashion. We evaluate our method on the 3RScan long-term dataset, showing notable improvements in this novel task over existing approaches. Our method DeltaVSG achieves an accuracy of 77.1% and a recall of 72.3%, often mimicking human intuition about how indoor scenes change over time. We further show the utility of VSG prediction in the task of active robotic change detection, speeding up task completion by 66.0% compared to a scene-change-unaware planner. We make our code available as open-source.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yuncong323完成签到,获得积分10
刚刚
小郭完成签到,获得积分10
刚刚
fd完成签到,获得积分10
刚刚
star完成签到,获得积分10
1秒前
3秒前
淡淡的豁完成签到,获得积分0
3秒前
Kay76完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
小狐狸完成签到,获得积分10
5秒前
CQ发布了新的文献求助10
6秒前
accept发布了新的文献求助10
6秒前
threonine完成签到,获得积分10
6秒前
8秒前
dede完成签到,获得积分10
8秒前
苹果枣豆完成签到,获得积分10
8秒前
Aurora完成签到,获得积分10
8秒前
9秒前
碧蓝恶天完成签到,获得积分10
9秒前
10秒前
VICKY完成签到,获得积分20
10秒前
11秒前
多肽专家完成签到,获得积分10
11秒前
11秒前
12秒前
13秒前
自然涵易完成签到,获得积分10
13秒前
lin完成签到,获得积分10
13秒前
山河完成签到,获得积分10
14秒前
VICKY发布了新的文献求助10
14秒前
优雅的老姆完成签到,获得积分10
14秒前
luyong完成签到 ,获得积分10
14秒前
15秒前
123PY完成签到,获得积分10
15秒前
Accept完成签到 ,获得积分10
16秒前
似风完成签到,获得积分10
16秒前
16秒前
粉鼻子完成签到 ,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953555
求助须知:如何正确求助?哪些是违规求助? 3499137
关于积分的说明 11094114
捐赠科研通 3229679
什么是DOI,文献DOI怎么找? 1785728
邀请新用户注册赠送积分活动 869490
科研通“疑难数据库(出版商)”最低求助积分说明 801478