State of health estimation of the LiFePO4 power battery based on the forgetting factor recursive Total Least Squares and the temperature correction

电池(电) 均方误差 荷电状态 健康状况 锂离子电池 功率(物理) 递归最小平方滤波器 控制理论(社会学) 计算机科学 工程类 统计 数学 算法 人工智能 热力学 控制(管理) 物理 自适应滤波器
作者
Muyao Wu,Li Wang,Ji Wu
出处
期刊:Energy [Elsevier BV]
卷期号:282: 128437-128437 被引量:10
标识
DOI:10.1016/j.energy.2023.128437
摘要

The decline of the lithium-ion power battery's State of Health (SOH) with usage significantly impacts other state estimation results, such as State of Charge (SOC). Hence, accurate estimation of the lithium-ion power battery's SOH holds vital importance in the battery management system. This paper proposes a SOH estimation method for the lithium-ion power battery, utilizing the Forgetting Factor Recursive Total Least Squares (FFRTLS) and incorporating the temperature correction. The FFRTLS effectively addresses the SOC estimation errors and the terminal current measurement noise simultaneously. The temperature correction method, based on the Arrhenius equation, corrects the influence of the ambient temperature during the SOH estimation process, ensuring that the ambient temperature does not affect the accuracy of the SOH estimation results. Additionally, the capacity convergence coefficient enhances the reliability of the SOH estimation results by preventing abrupt changes of the maximum available capacity. Experimental results on a LiFePO4 power battery under diverse working conditions and varying ambient temperatures, validate the effectiveness of the proposed method. The evaluation indexes, including Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Maximum Absolute Error (Max-AE), demonstrate the high accuracy of the SOH estimation results, with all indexes below 0.21%, 0.25% and 0.35% respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pancake应助宗剑采纳,获得10
刚刚
狂野觅云完成签到,获得积分20
刚刚
不会统计的科学家不是好画家完成签到,获得积分10
2秒前
2秒前
池番完成签到,获得积分20
3秒前
3秒前
浮游应助捏捏捏采纳,获得10
3秒前
5秒前
6秒前
bdJ发布了新的文献求助10
6秒前
zhzh0618完成签到,获得积分10
6秒前
浮游应助陌路采纳,获得10
6秒前
嗯嗯完成签到,获得积分10
7秒前
wang完成签到 ,获得积分10
8秒前
池番发布了新的文献求助10
8秒前
kai发布了新的文献求助20
9秒前
Orange应助benben采纳,获得10
10秒前
10秒前
领导范儿应助阔达碧空采纳,获得10
10秒前
开庆完成签到,获得积分10
11秒前
Amelia发布了新的文献求助10
11秒前
哈基米德应助宗剑采纳,获得20
11秒前
虚心的冷松完成签到,获得积分10
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
开朗寇发布了新的文献求助10
13秒前
13秒前
科研通AI5应助Hbobo采纳,获得10
14秒前
希望天下0贩的0应助Barry采纳,获得10
14秒前
14秒前
15秒前
甜蜜的白风完成签到,获得积分10
16秒前
神勇难胜发布了新的文献求助10
16秒前
16秒前
AN完成签到,获得积分10
17秒前
17秒前
呼了个呼完成签到,获得积分10
18秒前
lbc完成签到,获得积分10
18秒前
脑洞疼应助钉大帅采纳,获得10
19秒前
湘湘发布了新的文献求助10
19秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131642
求助须知:如何正确求助?哪些是违规求助? 4333372
关于积分的说明 13500477
捐赠科研通 4170310
什么是DOI,文献DOI怎么找? 2286231
邀请新用户注册赠送积分活动 1287130
关于科研通互助平台的介绍 1228164