Multi-view local hyperplane nearest neighbor model based on independence criterion for identifying vesicular transport proteins

超平面 k-最近邻算法 分类器(UML) 模式识别(心理学) 人工智能 计算机科学 独立性(概率论) 大边距最近邻 数学 统计 组合数学
作者
Rui Fan,Yongsheng Ding,Quan Zou,Yuan Liu
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:247: 125774-125774 被引量:3
标识
DOI:10.1016/j.ijbiomac.2023.125774
摘要

Vesicular transport proteins participate in various biological processes and play a significant role in the movement of substances within cells. These proteins are associated with numerous human diseases, making their identification particularly important. In this study, we developed a novel strategy for accurately identifying vesicular transport proteins. We developed a novel multi-view classifier called graph-regularized k-local hyperplane distance nearest neighbor model (HSIC-GHKNN), which combines the Hilbert-Schmidt independence criterion (HSIC)-based multi-view learning method with a local hyperplane distance nearest-neighbor classifier. We first extracted protein evolution information using two feature extraction methods, pseudo-position-specific scoring matrix (PsePSSM) and AATP, and addressed dataset imbalance using the Edited Nearest Neighbors (ENN) algorithm. Subsequently, we employed a local hyperplane distance nearest-neighbor classifier for each view identification and added an HSIC term to maintain independence between views. We then assessed the performance of our identification strategy and analyzed the PsePSSM and AATP feature sets to determine the influencing factors of the classification results. The experimental results demonstrate that the accurate and Matthew correlation coefficients of our strategy on the independent test set are 85.8 % and 0.548, respectively. Our approach outperformed existing methods in most evaluation metrics. In addition, the proposed multi-view classification model can easily be applied to similar identification tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
Momo发布了新的文献求助10
1秒前
朴素的松完成签到,获得积分10
1秒前
情怀应助死亦生矣采纳,获得10
1秒前
wangyuchen发布了新的文献求助10
1秒前
2秒前
2秒前
龙牙发布了新的文献求助10
2秒前
无辜的含之完成签到,获得积分10
3秒前
列娜完成签到,获得积分10
3秒前
wangg发布了新的文献求助10
4秒前
Katrimelody发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
4秒前
搜集达人应助hht采纳,获得10
4秒前
5秒前
丘比特应助科研人采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
嗯哼完成签到,获得积分10
5秒前
kkyy完成签到,获得积分20
6秒前
甜菜发布了新的文献求助10
6秒前
123发布了新的文献求助10
6秒前
7秒前
pxd完成签到,获得积分10
7秒前
7秒前
chenping_an完成签到,获得积分10
7秒前
BPM完成签到,获得积分20
7秒前
7秒前
7秒前
7秒前
engine发布了新的文献求助10
8秒前
科目三应助喜肥采纳,获得10
8秒前
鱼圆杂铺完成签到,获得积分10
8秒前
情怀应助wangg采纳,获得10
8秒前
zoe完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526107
求助须知:如何正确求助?哪些是违规求助? 4616283
关于积分的说明 14552778
捐赠科研通 4554503
什么是DOI,文献DOI怎么找? 2495919
邀请新用户注册赠送积分活动 1476266
关于科研通互助平台的介绍 1447928