Multi-view local hyperplane nearest neighbor model based on independence criterion for identifying vesicular transport proteins

超平面 k-最近邻算法 分类器(UML) 模式识别(心理学) 人工智能 计算机科学 独立性(概率论) 大边距最近邻 数学 统计 组合数学
作者
Rui Fan,Yongsheng Ding,Quan Zou,Yuan Liu
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:247: 125774-125774 被引量:3
标识
DOI:10.1016/j.ijbiomac.2023.125774
摘要

Vesicular transport proteins participate in various biological processes and play a significant role in the movement of substances within cells. These proteins are associated with numerous human diseases, making their identification particularly important. In this study, we developed a novel strategy for accurately identifying vesicular transport proteins. We developed a novel multi-view classifier called graph-regularized k-local hyperplane distance nearest neighbor model (HSIC-GHKNN), which combines the Hilbert-Schmidt independence criterion (HSIC)-based multi-view learning method with a local hyperplane distance nearest-neighbor classifier. We first extracted protein evolution information using two feature extraction methods, pseudo-position-specific scoring matrix (PsePSSM) and AATP, and addressed dataset imbalance using the Edited Nearest Neighbors (ENN) algorithm. Subsequently, we employed a local hyperplane distance nearest-neighbor classifier for each view identification and added an HSIC term to maintain independence between views. We then assessed the performance of our identification strategy and analyzed the PsePSSM and AATP feature sets to determine the influencing factors of the classification results. The experimental results demonstrate that the accurate and Matthew correlation coefficients of our strategy on the independent test set are 85.8 % and 0.548, respectively. Our approach outperformed existing methods in most evaluation metrics. In addition, the proposed multi-view classification model can easily be applied to similar identification tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助叶伟帮采纳,获得10
刚刚
刚刚
科研通AI6应助叶伟帮采纳,获得10
刚刚
刚刚
Anima应助xyy采纳,获得10
刚刚
FashionBoy应助shi hui采纳,获得10
刚刚
1秒前
风中冰香应助猪猪hero采纳,获得10
1秒前
future完成签到 ,获得积分10
1秒前
羊咩咩完成签到 ,获得积分10
2秒前
zmick发布了新的文献求助10
2秒前
吃面的章鱼完成签到,获得积分10
2秒前
royan完成签到,获得积分20
2秒前
称心鸵鸟完成签到,获得积分10
3秒前
邵珠洋完成签到 ,获得积分10
4秒前
5秒前
卢曹宇完成签到,获得积分10
5秒前
只只只完成签到,获得积分10
6秒前
h1发布了新的文献求助10
6秒前
6秒前
容棋完成签到,获得积分10
6秒前
邵邵发布了新的文献求助10
7秒前
喜东东发布了新的文献求助10
8秒前
9秒前
常丽芳发布了新的文献求助10
9秒前
科研通AI6应助投石问路采纳,获得20
9秒前
子车茗应助curry采纳,获得10
10秒前
加贝完成签到,获得积分10
10秒前
Sara完成签到,获得积分10
11秒前
兔子发布了新的文献求助10
11秒前
道阻且长完成签到,获得积分10
11秒前
12秒前
爆米花应助zzz采纳,获得10
12秒前
爱听歌依波完成签到,获得积分10
13秒前
李爱国应助nancylan采纳,获得10
13秒前
蜂蜜完成签到,获得积分10
13秒前
zmick完成签到,获得积分10
13秒前
科研通AI6应助猪猪hero采纳,获得10
14秒前
absb发布了新的文献求助10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285299
求助须知:如何正确求助?哪些是违规求助? 4438487
关于积分的说明 13817325
捐赠科研通 4319766
什么是DOI,文献DOI怎么找? 2371149
邀请新用户注册赠送积分活动 1366693
关于科研通互助平台的介绍 1330152