Multi-view local hyperplane nearest neighbor model based on independence criterion for identifying vesicular transport proteins

超平面 k-最近邻算法 分类器(UML) 模式识别(心理学) 人工智能 计算机科学 独立性(概率论) 大边距最近邻 数学 统计 组合数学
作者
Rui Fan,Yongsheng Ding,Quan Zou,Yuan Liu
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:247: 125774-125774 被引量:3
标识
DOI:10.1016/j.ijbiomac.2023.125774
摘要

Vesicular transport proteins participate in various biological processes and play a significant role in the movement of substances within cells. These proteins are associated with numerous human diseases, making their identification particularly important. In this study, we developed a novel strategy for accurately identifying vesicular transport proteins. We developed a novel multi-view classifier called graph-regularized k-local hyperplane distance nearest neighbor model (HSIC-GHKNN), which combines the Hilbert-Schmidt independence criterion (HSIC)-based multi-view learning method with a local hyperplane distance nearest-neighbor classifier. We first extracted protein evolution information using two feature extraction methods, pseudo-position-specific scoring matrix (PsePSSM) and AATP, and addressed dataset imbalance using the Edited Nearest Neighbors (ENN) algorithm. Subsequently, we employed a local hyperplane distance nearest-neighbor classifier for each view identification and added an HSIC term to maintain independence between views. We then assessed the performance of our identification strategy and analyzed the PsePSSM and AATP feature sets to determine the influencing factors of the classification results. The experimental results demonstrate that the accurate and Matthew correlation coefficients of our strategy on the independent test set are 85.8 % and 0.548, respectively. Our approach outperformed existing methods in most evaluation metrics. In addition, the proposed multi-view classification model can easily be applied to similar identification tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
move完成签到 ,获得积分10
刚刚
huhu完成签到,获得积分10
1秒前
fr发布了新的文献求助10
1秒前
1秒前
bd应助点看世界采纳,获得10
2秒前
3秒前
4秒前
闪耀星星发布了新的文献求助10
4秒前
5秒前
平安顺遂发布了新的文献求助30
5秒前
江月年完成签到 ,获得积分10
5秒前
xzf1996完成签到,获得积分20
8秒前
kakafan发布了新的文献求助10
8秒前
hunter发布了新的文献求助10
9秒前
潇洒的诗桃应助闪耀星星采纳,获得10
10秒前
10秒前
11秒前
栗子完成签到 ,获得积分10
12秒前
月神满月发布了新的文献求助30
12秒前
思源应助why采纳,获得10
14秒前
14秒前
苏苏完成签到,获得积分10
14秒前
NexusExplorer应助箜芒采纳,获得10
14秒前
chriselva应助北彧采纳,获得20
16秒前
xzf1996发布了新的文献求助10
16秒前
周子航发布了新的文献求助10
18秒前
QQ完成签到,获得积分10
22秒前
顾矜应助科研通管家采纳,获得10
22秒前
小二郎应助科研通管家采纳,获得10
22秒前
FashionBoy应助科研通管家采纳,获得10
22秒前
传奇3应助科研通管家采纳,获得10
22秒前
22秒前
香蕉觅云应助科研通管家采纳,获得10
22秒前
22秒前
桐桐应助Dr.Xu采纳,获得10
22秒前
丘比特应助WHaha采纳,获得10
23秒前
科研通AI2S应助zhou国兵采纳,获得10
23秒前
23秒前
雪糕考研完成签到,获得积分10
29秒前
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143741
求助须知:如何正确求助?哪些是违规求助? 2795245
关于积分的说明 7813862
捐赠科研通 2451235
什么是DOI,文献DOI怎么找? 1304371
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601413