Toward next-generation endoscopes integrating biomimetic video systems, nonlinear optical microscopy, and deep learning

背景(考古学) 人口 人工智能 计算机科学 深度学习 医学 生物 古生物学 环境卫生
作者
Stefan G. Stanciu,Karsten König,Young Min Song,Lior Wolf,Costas A. Charitidis,Paolo Bianchini,Martin Goetz
出处
期刊:Biophysics reviews [American Institute of Physics]
卷期号:4 (2) 被引量:2
标识
DOI:10.1063/5.0133027
摘要

According to the World Health Organization, the proportion of the world's population over 60 years will approximately double by 2050. This progressive increase in the elderly population will lead to a dramatic growth of age-related diseases, resulting in tremendous pressure on the sustainability of healthcare systems globally. In this context, finding more efficient ways to address cancers, a set of diseases whose incidence is correlated with age, is of utmost importance. Prevention of cancers to decrease morbidity relies on the identification of precursor lesions before the onset of the disease, or at least diagnosis at an early stage. In this article, after briefly discussing some of the most prominent endoscopic approaches for gastric cancer diagnostics, we review relevant progress in three emerging technologies that have significant potential to play pivotal roles in next-generation endoscopy systems: biomimetic vision (with special focus on compound eye cameras), non-linear optical microscopies, and Deep Learning. Such systems are urgently needed to enhance the three major steps required for the successful diagnostics of gastrointestinal cancers: detection, characterization, and confirmation of suspicious lesions. In the final part, we discuss challenges that lie en route to translating these technologies to next-generation endoscopes that could enhance gastrointestinal imaging, and depict a possible configuration of a system capable of (i) biomimetic endoscopic vision enabling easier detection of lesions, (ii) label-free in vivo tissue characterization, and (iii) intelligently automated gastrointestinal cancer diagnostic.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wkkkkkk发布了新的文献求助10
刚刚
Inspiring发布了新的文献求助10
刚刚
刚刚
科研通AI2S应助hh0采纳,获得10
1秒前
jjjiiii完成签到,获得积分10
1秒前
干净的天与完成签到,获得积分10
1秒前
vvvvvvv完成签到,获得积分10
1秒前
wanci应助就不吃菜菜采纳,获得10
1秒前
1秒前
科研虫文献求助号完成签到,获得积分10
2秒前
2秒前
旺旺完成签到,获得积分10
2秒前
月月发布了新的文献求助10
2秒前
无奈世立发布了新的文献求助10
2秒前
2秒前
害羞无春发布了新的文献求助10
3秒前
3秒前
4秒前
王木木爱喝周完成签到 ,获得积分10
4秒前
黄辉冯完成签到,获得积分10
4秒前
丘比特应助zfc采纳,获得10
4秒前
罗汉发布了新的文献求助10
4秒前
小猫最受发布了新的文献求助10
5秒前
dfjdjn发布了新的文献求助30
6秒前
明理一兰发布了新的文献求助10
7秒前
热心的善愁完成签到,获得积分10
7秒前
彭于晏应助清秀豪英采纳,获得10
7秒前
7秒前
8秒前
Micahaeler发布了新的文献求助10
9秒前
9秒前
轻松元绿完成签到 ,获得积分10
9秒前
落后以旋完成签到,获得积分10
9秒前
深情安青应助AUSTINZHOU采纳,获得10
9秒前
10秒前
hhaxxszd发布了新的文献求助10
10秒前
10秒前
Zhihu发布了新的文献求助10
10秒前
研友_VZG7GZ应助Wone3采纳,获得10
11秒前
WeiSONG完成签到,获得积分10
11秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3245398
求助须知:如何正确求助?哪些是违规求助? 2889057
关于积分的说明 8256709
捐赠科研通 2557392
什么是DOI,文献DOI怎么找? 1386090
科研通“疑难数据库(出版商)”最低求助积分说明 650285
邀请新用户注册赠送积分活动 626541