亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Linear conductance update improvement of CMOS-compatible second-order memristors for fast and energy-efficient training of a neural network using a memristor crossbar array

记忆电阻器 横杆开关 记忆晶体管 CMOS芯片 电导 人工神经网络 电阻随机存取存储器 神经形态工程学 计算机科学 能量(信号处理) 电子工程 材料科学 电气工程 物理 工程类 人工智能 电压 凝聚态物理 量子力学
作者
See‐On Park,Taehoon Park,Hakcheon Jeong,Seokman Hong,Seokho Seo,Yunah Kwon,Jongwon Lee,Shinhyun Choi
出处
期刊:Nanoscale horizons [Royal Society of Chemistry]
卷期号:8 (10): 1366-1376 被引量:7
标识
DOI:10.1039/d3nh00121k
摘要

Memristors are two-terminal memory devices that can change the conductance state and store analog values. Thanks to their simple structure, suitability for high-density integration, and non-volatile characteristics, memristors have been intensively studied as synapses in artificial neural network systems. Memristive synapses in neural networks have theoretically better energy efficiency compared with conventional von Neumann computing processors. However, memristor crossbar array-based neural networks usually suffer from low accuracy because of the non-ideal factors of memristors such as non-linearity and asymmetry, which prevent weights from being programmed to their targeted values. In this article, the improvement in linearity and symmetry of pulse update of a fully CMOS-compatible HfO2-based memristor is discussed, by using a second-order memristor effect with a heating pulse and a voltage divider composed of a series resistor and two diodes. We also demonstrate that the improved device characteristics enable energy-efficient and fast training of a memristor crossbar array-based neural network with high accuracy through a realistic model-based simulation. By improving the memristor device's linearity and symmetry, our results open up the possibility of a trainable memristor crossbar array-based neural network system that possesses great energy efficiency, high area efficiency, and high accuracy at the same time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mannone完成签到,获得积分10
1秒前
Xinying完成签到,获得积分10
14秒前
31秒前
吴门烟水完成签到,获得积分0
35秒前
爱笑的眼睛完成签到,获得积分10
53秒前
zsmj23完成签到 ,获得积分0
1分钟前
小飞鸡完成签到,获得积分10
1分钟前
CodeCraft应助liudy采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
liudy完成签到,获得积分10
1分钟前
liudy发布了新的文献求助10
1分钟前
香蕉觅云应助LukeLion采纳,获得10
2分钟前
2分钟前
2分钟前
Jimmy完成签到 ,获得积分10
2分钟前
LukeLion发布了新的文献求助10
2分钟前
anyilin发布了新的文献求助10
2分钟前
anyilin完成签到,获得积分10
2分钟前
3分钟前
3分钟前
852应助科研通管家采纳,获得10
3分钟前
4分钟前
大模型应助爱听歌笑寒采纳,获得10
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
amengptsd完成签到,获得积分10
5分钟前
优秀的dd完成签到 ,获得积分10
5分钟前
乐乐应助勇敢的蝙蝠侠采纳,获得10
6分钟前
CodeCraft应助勇敢的蝙蝠侠采纳,获得10
6分钟前
完美世界应助西瓜采纳,获得10
6分钟前
6分钟前
西瓜发布了新的文献求助10
6分钟前
6分钟前
6分钟前
极地东风发布了新的文献求助10
6分钟前
西瓜完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4611550
求助须知:如何正确求助?哪些是违规求助? 4017019
关于积分的说明 12435975
捐赠科研通 3698914
什么是DOI,文献DOI怎么找? 2039848
邀请新用户注册赠送积分活动 1072626
科研通“疑难数据库(出版商)”最低求助积分说明 956329