Linear conductance update improvement of CMOS-compatible second-order memristors for fast and energy-efficient training of a neural network using a memristor crossbar array

记忆电阻器 横杆开关 记忆晶体管 CMOS芯片 电导 人工神经网络 电阻随机存取存储器 神经形态工程学 计算机科学 能量(信号处理) 电子工程 材料科学 电气工程 物理 工程类 人工智能 电压 凝聚态物理 量子力学
作者
See‐On Park,Taehoon Park,Hakcheon Jeong,Seokman Hong,Seokho Seo,Yunah Kwon,Jongwon Lee,Shinhyun Choi
出处
期刊:Nanoscale horizons [The Royal Society of Chemistry]
卷期号:8 (10): 1366-1376 被引量:7
标识
DOI:10.1039/d3nh00121k
摘要

Memristors are two-terminal memory devices that can change the conductance state and store analog values. Thanks to their simple structure, suitability for high-density integration, and non-volatile characteristics, memristors have been intensively studied as synapses in artificial neural network systems. Memristive synapses in neural networks have theoretically better energy efficiency compared with conventional von Neumann computing processors. However, memristor crossbar array-based neural networks usually suffer from low accuracy because of the non-ideal factors of memristors such as non-linearity and asymmetry, which prevent weights from being programmed to their targeted values. In this article, the improvement in linearity and symmetry of pulse update of a fully CMOS-compatible HfO2-based memristor is discussed, by using a second-order memristor effect with a heating pulse and a voltage divider composed of a series resistor and two diodes. We also demonstrate that the improved device characteristics enable energy-efficient and fast training of a memristor crossbar array-based neural network with high accuracy through a realistic model-based simulation. By improving the memristor device's linearity and symmetry, our results open up the possibility of a trainable memristor crossbar array-based neural network system that possesses great energy efficiency, high area efficiency, and high accuracy at the same time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大胆夜绿发布了新的文献求助10
1秒前
Dr终年完成签到,获得积分10
1秒前
katharsis完成签到,获得积分10
1秒前
Ricardo发布了新的文献求助10
2秒前
歪歪象发布了新的文献求助10
2秒前
zeno123456完成签到,获得积分10
2秒前
陈某某发布了新的文献求助10
2秒前
3秒前
he完成签到,获得积分10
3秒前
3秒前
科研小民工应助忍冬半夏采纳,获得30
3秒前
小马甲应助年华采纳,获得10
3秒前
3秒前
CipherSage应助开放的听枫采纳,获得10
3秒前
Never stall发布了新的文献求助10
3秒前
3秒前
Jolene66发布了新的文献求助10
4秒前
zy完成签到,获得积分10
4秒前
Adzuki0812完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
5秒前
Anne应助哇哈哈采纳,获得10
6秒前
四季刻歌完成签到,获得积分10
6秒前
忆点儿孤狼完成签到,获得积分10
6秒前
搜集达人应助高贵的迎蕾采纳,获得10
6秒前
华仔应助一平采纳,获得10
7秒前
汉堡包应助bluer采纳,获得10
7秒前
7秒前
7秒前
直率心锁完成签到,获得积分10
7秒前
8秒前
李若水完成签到,获得积分10
8秒前
默默水之发布了新的文献求助10
8秒前
zink发布了新的文献求助10
9秒前
10秒前
映寒完成签到,获得积分10
10秒前
JamesPei应助幸福胡萝卜采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678