Linear conductance update improvement of CMOS-compatible second-order memristors for fast and energy-efficient training of a neural network using a memristor crossbar array

记忆电阻器 横杆开关 记忆晶体管 CMOS芯片 电导 人工神经网络 电阻随机存取存储器 神经形态工程学 计算机科学 能量(信号处理) 电子工程 材料科学 电气工程 物理 工程类 人工智能 电压 凝聚态物理 量子力学
作者
See‐On Park,Taehoon Park,Hakcheon Jeong,Seokman Hong,Seokho Seo,Yunah Kwon,Jongwon Lee,Shinhyun Choi
出处
期刊:Nanoscale horizons [The Royal Society of Chemistry]
卷期号:8 (10): 1366-1376 被引量:7
标识
DOI:10.1039/d3nh00121k
摘要

Memristors are two-terminal memory devices that can change the conductance state and store analog values. Thanks to their simple structure, suitability for high-density integration, and non-volatile characteristics, memristors have been intensively studied as synapses in artificial neural network systems. Memristive synapses in neural networks have theoretically better energy efficiency compared with conventional von Neumann computing processors. However, memristor crossbar array-based neural networks usually suffer from low accuracy because of the non-ideal factors of memristors such as non-linearity and asymmetry, which prevent weights from being programmed to their targeted values. In this article, the improvement in linearity and symmetry of pulse update of a fully CMOS-compatible HfO2-based memristor is discussed, by using a second-order memristor effect with a heating pulse and a voltage divider composed of a series resistor and two diodes. We also demonstrate that the improved device characteristics enable energy-efficient and fast training of a memristor crossbar array-based neural network with high accuracy through a realistic model-based simulation. By improving the memristor device's linearity and symmetry, our results open up the possibility of a trainable memristor crossbar array-based neural network system that possesses great energy efficiency, high area efficiency, and high accuracy at the same time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助whikerlw采纳,获得10
刚刚
启蒙与追索完成签到,获得积分10
1秒前
2秒前
GXF给GXF的求助进行了留言
2秒前
传奇3应助清圆527采纳,获得30
2秒前
钢盔dcl发布了新的文献求助10
2秒前
2秒前
求助人员发布了新的文献求助30
2秒前
852应助wuxiaoyan426采纳,获得10
3秒前
CipherSage应助小德采纳,获得10
3秒前
ping完成签到,获得积分10
3秒前
3秒前
hey应助简单如天采纳,获得10
3秒前
4秒前
4秒前
zxd完成签到,获得积分10
4秒前
5秒前
5秒前
nomin完成签到,获得积分10
6秒前
7秒前
7秒前
热心弱完成签到,获得积分10
7秒前
chenjp完成签到,获得积分10
7秒前
WYR发布了新的文献求助10
7秒前
1111发布了新的文献求助10
7秒前
搜集达人应助fcyyc采纳,获得10
8秒前
蕾子发布了新的文献求助10
8秒前
科研通AI6应助阔达晓博采纳,获得10
8秒前
侯总应助等乙天采纳,获得10
8秒前
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
zqq123完成签到,获得积分10
9秒前
玄风完成签到,获得积分0
10秒前
madison发布了新的文献求助30
10秒前
10秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587104
求助须知:如何正确求助?哪些是违规求助? 4670242
关于积分的说明 14781891
捐赠科研通 4621991
什么是DOI,文献DOI怎么找? 2531119
邀请新用户注册赠送积分活动 1499924
关于科研通互助平台的介绍 1468015