Linear conductance update improvement of CMOS-compatible second-order memristors for fast and energy-efficient training of a neural network using a memristor crossbar array

记忆电阻器 横杆开关 记忆晶体管 CMOS芯片 电导 人工神经网络 电阻随机存取存储器 神经形态工程学 计算机科学 能量(信号处理) 电子工程 材料科学 电气工程 物理 工程类 人工智能 电压 凝聚态物理 量子力学
作者
See‐On Park,Taehoon Park,Hakcheon Jeong,Seokman Hong,Seokho Seo,Yunah Kwon,Jongwon Lee,Shinhyun Choi
出处
期刊:Nanoscale horizons [The Royal Society of Chemistry]
卷期号:8 (10): 1366-1376 被引量:7
标识
DOI:10.1039/d3nh00121k
摘要

Memristors are two-terminal memory devices that can change the conductance state and store analog values. Thanks to their simple structure, suitability for high-density integration, and non-volatile characteristics, memristors have been intensively studied as synapses in artificial neural network systems. Memristive synapses in neural networks have theoretically better energy efficiency compared with conventional von Neumann computing processors. However, memristor crossbar array-based neural networks usually suffer from low accuracy because of the non-ideal factors of memristors such as non-linearity and asymmetry, which prevent weights from being programmed to their targeted values. In this article, the improvement in linearity and symmetry of pulse update of a fully CMOS-compatible HfO2-based memristor is discussed, by using a second-order memristor effect with a heating pulse and a voltage divider composed of a series resistor and two diodes. We also demonstrate that the improved device characteristics enable energy-efficient and fast training of a memristor crossbar array-based neural network with high accuracy through a realistic model-based simulation. By improving the memristor device's linearity and symmetry, our results open up the possibility of a trainable memristor crossbar array-based neural network system that possesses great energy efficiency, high area efficiency, and high accuracy at the same time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐徐完成签到,获得积分10
刚刚
hcy完成签到,获得积分10
刚刚
2秒前
2秒前
2秒前
禹王神槊发布了新的文献求助10
3秒前
ttrtdong发布了新的文献求助10
3秒前
魏杨洋发布了新的文献求助10
4秒前
文章快快来应助ixueyi采纳,获得10
4秒前
sunny33发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
promise发布了新的文献求助10
6秒前
6秒前
7秒前
岳维芸完成签到,获得积分20
7秒前
7秒前
7秒前
高兴璎发布了新的文献求助10
7秒前
科研通AI6应助顾瑶采纳,获得10
9秒前
姜惠发布了新的文献求助10
9秒前
lsh完成签到 ,获得积分10
9秒前
谦让的板栗完成签到 ,获得积分20
9秒前
禹王神槊完成签到,获得积分10
9秒前
橙子完成签到,获得积分10
9秒前
无名应助yuzi采纳,获得20
10秒前
bkagyin应助wuran采纳,获得10
10秒前
10秒前
乌苏苏发布了新的文献求助10
10秒前
sumugeng完成签到,获得积分10
10秒前
山野的雾完成签到 ,获得积分10
11秒前
zk001完成签到,获得积分10
11秒前
xl发布了新的文献求助10
11秒前
孙皓阳发布了新的文献求助10
11秒前
11秒前
Ariel完成签到,获得积分10
12秒前
智障猫完成签到,获得积分10
12秒前
shaung yang发布了新的文献求助10
12秒前
mawari完成签到,获得积分20
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629915
求助须知:如何正确求助?哪些是违规求助? 4721053
关于积分的说明 14971551
捐赠科研通 4787872
什么是DOI,文献DOI怎么找? 2556612
邀请新用户注册赠送积分活动 1517713
关于科研通互助平台的介绍 1478302