Digital twin-assisted imbalanced fault diagnosis framework using subdomain adaptive mechanism and margin-aware regularization

正规化(语言学) 边距(机器学习) 计算机科学 忠诚 非线性系统 数据挖掘 人工智能 机器学习 物理 电信 量子力学
作者
Shen Yan,Xiang Zhong,Haidong Shao,Yuhang Ming,Chao Liu,Bin Liu
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:239: 109522-109522 被引量:38
标识
DOI:10.1016/j.ress.2023.109522
摘要

The current data-level and algorithm-level based imbalanced fault diagnosis methods have respective limitations such as uneven data generation quality and excessive reliance on minority class information. In response to these limitations, this study proposes a novel digital twin-assisted framework for imbalanced fault diagnosis. The framework begins by analyzing the nonlinear kinetic characteristics of the gearbox and establishing a dynamic simulation model assisted by digital twin technology to generate high-fidelity simulated fault data. Subsequently, a subdomain adaptive mechanism is employed to align the conditional distribution of the subdomains by minimizing the dissimilarity of fine-grained features between the simulated and real-world fault data. To improve the fault tolerance of the model's diagnosis, margin-aware regularization is designed by applying significant regularization penalties to the fault data margins. Experimental results from two gearboxes demonstrate that, compared to the recent data-level and algorithm-level based imbalanced fault diagnosis methods, the proposed framework holds distinct advantages under the influence of highly imbalanced data, offering a fresh perspective for addressing this challenging scenario. In addition, the effectiveness of subdomain adaptive mechanism and margin-aware regularization is verified through the ablation experiment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喜悦香薇完成签到 ,获得积分10
1秒前
SciGPT应助45度人采纳,获得20
1秒前
李振博发布了新的文献求助10
2秒前
小远发布了新的文献求助10
2秒前
1123完成签到,获得积分10
3秒前
小白完成签到,获得积分10
3秒前
jiwoong完成签到 ,获得积分10
4秒前
研友_Lmg1gZ完成签到,获得积分10
8秒前
9秒前
尊敬书萱完成签到 ,获得积分10
10秒前
10秒前
萝卜发布了新的文献求助10
15秒前
缥缈的采蓝完成签到,获得积分10
16秒前
铁马冰河入梦来完成签到,获得积分10
18秒前
科研通AI2S应助单薄咖啡豆采纳,获得10
19秒前
杨阳洋完成签到,获得积分10
19秒前
敬鱼完成签到,获得积分10
21秒前
21秒前
xd完成签到,获得积分20
22秒前
CAOHOU应助Silverexile采纳,获得10
25秒前
归尘应助IvanMcRae采纳,获得10
25秒前
绿绿发布了新的文献求助10
27秒前
28秒前
哈哈完成签到,获得积分10
28秒前
情怀应助011235813采纳,获得10
31秒前
32秒前
33秒前
33秒前
KINDMAGIC发布了新的文献求助30
36秒前
端庄的煎蛋完成签到,获得积分0
36秒前
38秒前
Jasper应助zz采纳,获得10
40秒前
策策完成签到,获得积分20
40秒前
TTiger007完成签到,获得积分10
41秒前
霸气的金鱼完成签到,获得积分10
42秒前
kiki完成签到,获得积分10
42秒前
cl完成签到,获得积分10
42秒前
42秒前
011235813发布了新的文献求助10
43秒前
mr_wang完成签到 ,获得积分10
44秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962523
求助须知:如何正确求助?哪些是违规求助? 3508549
关于积分的说明 11141583
捐赠科研通 3241262
什么是DOI,文献DOI怎么找? 1791486
邀请新用户注册赠送积分活动 872876
科研通“疑难数据库(出版商)”最低求助积分说明 803474