Digital twin-assisted imbalanced fault diagnosis framework using subdomain adaptive mechanism and margin-aware regularization

正规化(语言学) 边距(机器学习) 计算机科学 忠诚 非线性系统 数据挖掘 人工智能 机器学习 物理 量子力学 电信
作者
Shen Yan,Xiang Zhong,Haidong Shao,Yuhang Ming,Chao Liu,Bin Liu
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:239: 109522-109522 被引量:24
标识
DOI:10.1016/j.ress.2023.109522
摘要

The current data-level and algorithm-level based imbalanced fault diagnosis methods have respective limitations such as uneven data generation quality and excessive reliance on minority class information. In response to these limitations, this study proposes a novel digital twin-assisted framework for imbalanced fault diagnosis. The framework begins by analyzing the nonlinear kinetic characteristics of the gearbox and establishing a dynamic simulation model assisted by digital twin technology to generate high-fidelity simulated fault data. Subsequently, a subdomain adaptive mechanism is employed to align the conditional distribution of the subdomains by minimizing the dissimilarity of fine-grained features between the simulated and real-world fault data. To improve the fault tolerance of the model's diagnosis, margin-aware regularization is designed by applying significant regularization penalties to the fault data margins. Experimental results from two gearboxes demonstrate that, compared to the recent data-level and algorithm-level based imbalanced fault diagnosis methods, the proposed framework holds distinct advantages under the influence of highly imbalanced data, offering a fresh perspective for addressing this challenging scenario. In addition, the effectiveness of subdomain adaptive mechanism and margin-aware regularization is verified through the ablation experiment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱听歌的艳完成签到,获得积分20
1秒前
2秒前
wink完成签到,获得积分10
2秒前
Mars1998发布了新的文献求助10
3秒前
得到太阳发布了新的文献求助10
4秒前
桐桐应助辛勤的大雁采纳,获得10
4秒前
4秒前
尹尹尹发布了新的文献求助10
5秒前
5秒前
YY发布了新的文献求助10
6秒前
wink发布了新的文献求助10
6秒前
六月初八夜完成签到,获得积分10
8秒前
ira发布了新的文献求助10
9秒前
9秒前
9秒前
Lynx完成签到,获得积分10
9秒前
咩咩完成签到,获得积分10
10秒前
田様应助个性的南珍采纳,获得10
11秒前
why完成签到,获得积分10
12秒前
mile发布了新的文献求助10
12秒前
13秒前
从容芮应助Mars1998采纳,获得10
13秒前
Lynx发布了新的文献求助10
16秒前
20秒前
chai完成签到,获得积分10
22秒前
23秒前
科目三应助科研通管家采纳,获得10
24秒前
华仔应助科研通管家采纳,获得10
24秒前
月野兔完成签到,获得积分10
24秒前
脑洞疼应助科研通管家采纳,获得10
24秒前
乐乐应助科研通管家采纳,获得10
24秒前
pgjwl应助科研通管家采纳,获得10
24秒前
sammi米应助科研通管家采纳,获得30
24秒前
Jasper应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
任性的仰应助科研通管家采纳,获得10
24秒前
任性亚男应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
24秒前
wanci应助科研通管家采纳,获得10
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136629
求助须知:如何正确求助?哪些是违规求助? 2787671
关于积分的说明 7782749
捐赠科研通 2443752
什么是DOI,文献DOI怎么找? 1299386
科研通“疑难数据库(出版商)”最低求助积分说明 625440
版权声明 600954