Assessing project portfolio risk via an enhanced GA-BPNN combined with PCA

计算机科学 均方误差 人工神经网络 平均绝对百分比误差 支持向量机 主成分分析 随机森林 人工智能 反向传播 机器学习 数据挖掘 模式识别(心理学) 统计 数学
作者
Libiao Bai,Chul Hwan Song,Xinyu Zhou,Yuanyuan Tian,Lan Wei
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:126: 106779-106779 被引量:16
标识
DOI:10.1016/j.engappai.2023.106779
摘要

Assessing project portfolio risk (PPR) is essential for organizations to grasp the overall risk levels of project portfolios (PPs) and realize PPR mitigation. However, current research is inadequate to effectively assess PPR, which brings challenges to managing PPR. In this context, the purpose of this study is to develop a PPR assessment model via an enhanced backpropagation neural network (BPNN). First, PPR assessment criteria considering project interdependencies are determined. Second, fuzzy logic is used to obtain original data for assessment criteria. Principal component analysis (PCA) is then employed to reduce the dimensionality of assessment criteria and derive the input and output of BPNN. Third, an improved genetic algorithm (IGA) is designed to optimize the initial weights and thresholds of BPNN. On this basis, the PCA-IGA-BPNN assessment model is constructed, followed by training and testing, possessing a test accuracy of 98.6%. Finally, comparison experiments are conducted from both internal and external perspectives. For internal comparison, the proposed model yields less mean absolute percentage error (MAPE), mean square error (MSE), and root mean square error (RMSE) than PCA-GA-BPNN, IGA-BPNN, PCA-BPNN and BPNN and offers the largest convergence speed (γ). As for external comparison, the presented model produces lower MAPE, MSE, and RMSE than Decision Tree (DT), Support Vector Machine (SVM), Random Forest (RF), and K-Nearest Neighbor (KNN) and has the largest coefficient of determination (R2). Results indicate that the established model performs more satisfactorily in assessing PPR. This research enriches PPR assessment methods and provides managers with a useful tool to evaluate PPR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪慧的凉面完成签到,获得积分10
刚刚
lgh完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
星辰大海应助hotongue采纳,获得10
4秒前
lulu发布了新的文献求助10
4秒前
凡凡发布了新的文献求助10
5秒前
刘奇发布了新的文献求助10
8秒前
麻花发布了新的文献求助10
9秒前
科研通AI6应助lulu采纳,获得10
9秒前
科研通AI6应助lulu采纳,获得10
9秒前
米粒之珠亦放光华完成签到,获得积分10
10秒前
10秒前
风趣问蕊完成签到,获得积分10
11秒前
dwclongy完成签到,获得积分10
11秒前
斯文焱发布了新的文献求助10
12秒前
关关过应助加油通采纳,获得20
12秒前
量子星尘发布了新的文献求助10
15秒前
炙热冰蓝完成签到,获得积分10
15秒前
cicytjsxjr发布了新的文献求助10
16秒前
杨怂怂完成签到 ,获得积分10
17秒前
星辰大海应助dwclongy采纳,获得10
17秒前
宁_宁发布了新的文献求助10
18秒前
我是老大应助麻花采纳,获得10
19秒前
20秒前
kaka完成签到 ,获得积分10
21秒前
22秒前
CodeCraft应助汪宇采纳,获得10
22秒前
量子星尘发布了新的文献求助10
23秒前
科目三应助mu采纳,获得10
24秒前
爱听歌小蚂蚁关注了科研通微信公众号
24秒前
一种信仰完成签到 ,获得积分10
24秒前
24秒前
顾矜应助淡淡的觅松采纳,获得10
25秒前
28秒前
mount完成签到,获得积分10
30秒前
斯文败类应助long采纳,获得10
31秒前
32秒前
Orange应助作业对不起采纳,获得10
33秒前
33秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742086
求助须知:如何正确求助?哪些是违规求助? 5405647
关于积分的说明 15343886
捐赠科研通 4883555
什么是DOI,文献DOI怎么找? 2625085
邀请新用户注册赠送积分活动 1573951
关于科研通互助平台的介绍 1530896