Assessing project portfolio risk via an enhanced GA-BPNN combined with PCA

计算机科学 均方误差 人工神经网络 平均绝对百分比误差 支持向量机 主成分分析 随机森林 人工智能 反向传播 机器学习 数据挖掘 模式识别(心理学) 统计 数学
作者
Libiao Bai,Chul Hwan Song,Xinyu Zhou,Yuanyuan Tian,Lan Wei
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:126: 106779-106779 被引量:16
标识
DOI:10.1016/j.engappai.2023.106779
摘要

Assessing project portfolio risk (PPR) is essential for organizations to grasp the overall risk levels of project portfolios (PPs) and realize PPR mitigation. However, current research is inadequate to effectively assess PPR, which brings challenges to managing PPR. In this context, the purpose of this study is to develop a PPR assessment model via an enhanced backpropagation neural network (BPNN). First, PPR assessment criteria considering project interdependencies are determined. Second, fuzzy logic is used to obtain original data for assessment criteria. Principal component analysis (PCA) is then employed to reduce the dimensionality of assessment criteria and derive the input and output of BPNN. Third, an improved genetic algorithm (IGA) is designed to optimize the initial weights and thresholds of BPNN. On this basis, the PCA-IGA-BPNN assessment model is constructed, followed by training and testing, possessing a test accuracy of 98.6%. Finally, comparison experiments are conducted from both internal and external perspectives. For internal comparison, the proposed model yields less mean absolute percentage error (MAPE), mean square error (MSE), and root mean square error (RMSE) than PCA-GA-BPNN, IGA-BPNN, PCA-BPNN and BPNN and offers the largest convergence speed (γ). As for external comparison, the presented model produces lower MAPE, MSE, and RMSE than Decision Tree (DT), Support Vector Machine (SVM), Random Forest (RF), and K-Nearest Neighbor (KNN) and has the largest coefficient of determination (R2). Results indicate that the established model performs more satisfactorily in assessing PPR. This research enriches PPR assessment methods and provides managers with a useful tool to evaluate PPR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分20
1秒前
李健的小迷弟应助yili采纳,获得10
1秒前
L.完成签到,获得积分10
1秒前
木子发布了新的文献求助10
1秒前
威武诺言发布了新的文献求助10
1秒前
科研通AI5应助孙二二采纳,获得10
1秒前
1秒前
英姑应助rookie_b0采纳,获得10
2秒前
毛慢慢发布了新的文献求助10
2秒前
123完成签到,获得积分10
2秒前
kangkang完成签到,获得积分10
3秒前
丘比特应助东风第一枝采纳,获得10
3秒前
3秒前
丰知然应助normankasimodo采纳,获得10
4秒前
黑森林发布了新的文献求助30
4秒前
hu970发布了新的文献求助10
4秒前
4秒前
俭朴夜雪发布了新的文献求助30
4秒前
林上草应助lzj001983采纳,获得10
4秒前
小白完成签到,获得积分20
4秒前
药疯了完成签到,获得积分20
5秒前
桐桐应助123采纳,获得10
5秒前
风中寄云发布了新的文献求助10
5秒前
buuyoo发布了新的文献求助10
5秒前
zjudxn发布了新的文献求助10
5秒前
春夏爱科研完成签到,获得积分10
6秒前
飞翔的西红柿完成签到,获得积分10
6秒前
xzy完成签到,获得积分10
6秒前
L.发布了新的文献求助20
7秒前
Verdigris完成签到,获得积分10
8秒前
cindy完成签到,获得积分10
8秒前
研友_VZG7GZ应助愉快彩虹采纳,获得10
8秒前
金色热浪完成签到 ,获得积分10
8秒前
快去读文献完成签到,获得积分20
8秒前
斯文静曼完成签到,获得积分10
8秒前
8秒前
8秒前
拼搏思卉关注了科研通微信公众号
9秒前
9秒前
liudiqiu应助酷酷的起眸采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759