Assessing project portfolio risk via an enhanced GA-BPNN combined with PCA

计算机科学 均方误差 人工神经网络 平均绝对百分比误差 支持向量机 主成分分析 随机森林 人工智能 反向传播 机器学习 数据挖掘 模式识别(心理学) 统计 数学
作者
Libiao Bai,Chul Hwan Song,Xinyu Zhou,Yuanyuan Tian,Lan Wei
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:126: 106779-106779 被引量:16
标识
DOI:10.1016/j.engappai.2023.106779
摘要

Assessing project portfolio risk (PPR) is essential for organizations to grasp the overall risk levels of project portfolios (PPs) and realize PPR mitigation. However, current research is inadequate to effectively assess PPR, which brings challenges to managing PPR. In this context, the purpose of this study is to develop a PPR assessment model via an enhanced backpropagation neural network (BPNN). First, PPR assessment criteria considering project interdependencies are determined. Second, fuzzy logic is used to obtain original data for assessment criteria. Principal component analysis (PCA) is then employed to reduce the dimensionality of assessment criteria and derive the input and output of BPNN. Third, an improved genetic algorithm (IGA) is designed to optimize the initial weights and thresholds of BPNN. On this basis, the PCA-IGA-BPNN assessment model is constructed, followed by training and testing, possessing a test accuracy of 98.6%. Finally, comparison experiments are conducted from both internal and external perspectives. For internal comparison, the proposed model yields less mean absolute percentage error (MAPE), mean square error (MSE), and root mean square error (RMSE) than PCA-GA-BPNN, IGA-BPNN, PCA-BPNN and BPNN and offers the largest convergence speed (γ). As for external comparison, the presented model produces lower MAPE, MSE, and RMSE than Decision Tree (DT), Support Vector Machine (SVM), Random Forest (RF), and K-Nearest Neighbor (KNN) and has the largest coefficient of determination (R2). Results indicate that the established model performs more satisfactorily in assessing PPR. This research enriches PPR assessment methods and provides managers with a useful tool to evaluate PPR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林一木完成签到,获得积分10
刚刚
刚刚
1秒前
破晓完成签到,获得积分10
1秒前
1秒前
飘逸的飞柏完成签到,获得积分10
2秒前
qqqq发布了新的文献求助10
2秒前
sasa完成签到,获得积分10
3秒前
jiejie完成签到,获得积分10
3秒前
check003完成签到,获得积分10
3秒前
小平应助光亮萤采纳,获得10
3秒前
个性的紫菜应助123456采纳,获得10
3秒前
lipel完成签到,获得积分10
5秒前
李薇完成签到,获得积分10
6秒前
Tony完成签到,获得积分10
6秒前
完美世界应助精明的亿先采纳,获得10
6秒前
Evol完成签到 ,获得积分10
6秒前
灵巧母鸡发布了新的文献求助10
7秒前
lecturer完成签到,获得积分10
7秒前
Zsl121完成签到,获得积分10
8秒前
9秒前
MQ&FF完成签到,获得积分0
9秒前
roselin26完成签到,获得积分10
9秒前
优雅友菱发布了新的文献求助10
9秒前
Jaesyn发布了新的文献求助30
9秒前
yzy完成签到,获得积分10
10秒前
2836366925完成签到,获得积分10
11秒前
传奇3应助歪石开通采纳,获得10
11秒前
真实的储发布了新的文献求助10
12秒前
lhy完成签到,获得积分10
12秒前
小钱钱完成签到,获得积分10
13秒前
满当当完成签到 ,获得积分10
13秒前
万能图书馆应助wentong采纳,获得10
13秒前
海带拳大力士完成签到,获得积分10
13秒前
Clarissa完成签到,获得积分10
13秒前
14秒前
一一完成签到,获得积分10
15秒前
爆米花应助Lwxbb采纳,获得10
17秒前
彭于晏应助灵巧母鸡采纳,获得10
17秒前
闪闪含巧完成签到,获得积分10
17秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
the development of the right of privacy in new york 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180114
求助须知:如何正确求助?哪些是违规求助? 2830498
关于积分的说明 7977736
捐赠科研通 2492069
什么是DOI,文献DOI怎么找? 1329190
科研通“疑难数据库(出版商)”最低求助积分说明 635704
版权声明 602954