亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Assessing project portfolio risk via an enhanced GA-BPNN combined with PCA

计算机科学 均方误差 人工神经网络 平均绝对百分比误差 支持向量机 主成分分析 随机森林 人工智能 反向传播 机器学习 数据挖掘 模式识别(心理学) 统计 数学
作者
Libiao Bai,Chul Hwan Song,Xinyu Zhou,Yuanyuan Tian,Lan Wei
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:126: 106779-106779 被引量:16
标识
DOI:10.1016/j.engappai.2023.106779
摘要

Assessing project portfolio risk (PPR) is essential for organizations to grasp the overall risk levels of project portfolios (PPs) and realize PPR mitigation. However, current research is inadequate to effectively assess PPR, which brings challenges to managing PPR. In this context, the purpose of this study is to develop a PPR assessment model via an enhanced backpropagation neural network (BPNN). First, PPR assessment criteria considering project interdependencies are determined. Second, fuzzy logic is used to obtain original data for assessment criteria. Principal component analysis (PCA) is then employed to reduce the dimensionality of assessment criteria and derive the input and output of BPNN. Third, an improved genetic algorithm (IGA) is designed to optimize the initial weights and thresholds of BPNN. On this basis, the PCA-IGA-BPNN assessment model is constructed, followed by training and testing, possessing a test accuracy of 98.6%. Finally, comparison experiments are conducted from both internal and external perspectives. For internal comparison, the proposed model yields less mean absolute percentage error (MAPE), mean square error (MSE), and root mean square error (RMSE) than PCA-GA-BPNN, IGA-BPNN, PCA-BPNN and BPNN and offers the largest convergence speed (γ). As for external comparison, the presented model produces lower MAPE, MSE, and RMSE than Decision Tree (DT), Support Vector Machine (SVM), Random Forest (RF), and K-Nearest Neighbor (KNN) and has the largest coefficient of determination (R2). Results indicate that the established model performs more satisfactorily in assessing PPR. This research enriches PPR assessment methods and provides managers with a useful tool to evaluate PPR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
时尚的萝发布了新的文献求助10
4秒前
13秒前
羽魄完成签到 ,获得积分10
15秒前
科研兵发布了新的文献求助10
18秒前
能干凝冬完成签到,获得积分10
20秒前
22秒前
zqq完成签到,获得积分0
35秒前
40秒前
科研通AI2S应助科研兵采纳,获得10
57秒前
充电宝应助小坚果采纳,获得10
1分钟前
天天天晴完成签到 ,获得积分10
1分钟前
调皮的代双完成签到 ,获得积分10
1分钟前
1分钟前
风华正茂发布了新的文献求助10
1分钟前
彩色的曼柔完成签到 ,获得积分10
1分钟前
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
小坚果发布了新的文献求助10
1分钟前
英姑应助风华正茂采纳,获得30
1分钟前
1分钟前
风华正茂发布了新的文献求助30
1分钟前
清浅发布了新的文献求助30
1分钟前
1分钟前
2分钟前
陈y完成签到 ,获得积分10
2分钟前
小橙子完成签到 ,获得积分10
2分钟前
霸气布鲁托完成签到 ,获得积分10
2分钟前
3分钟前
希喵子发布了新的文献求助10
3分钟前
cenghao完成签到,获得积分0
3分钟前
生动友容发布了新的文献求助100
3分钟前
想躺平完成签到,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664209
求助须知:如何正确求助?哪些是违规求助? 4858803
关于积分的说明 15107274
捐赠科研通 4822673
什么是DOI,文献DOI怎么找? 2581639
邀请新用户注册赠送积分活动 1535838
关于科研通互助平台的介绍 1494067