Assessing project portfolio risk via an enhanced GA-BPNN combined with PCA

计算机科学 均方误差 人工神经网络 平均绝对百分比误差 支持向量机 主成分分析 随机森林 人工智能 反向传播 机器学习 数据挖掘 模式识别(心理学) 统计 数学
作者
Libiao Bai,Chul Hwan Song,Xinyu Zhou,Yuanyuan Tian,Lan Wei
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:126: 106779-106779 被引量:16
标识
DOI:10.1016/j.engappai.2023.106779
摘要

Assessing project portfolio risk (PPR) is essential for organizations to grasp the overall risk levels of project portfolios (PPs) and realize PPR mitigation. However, current research is inadequate to effectively assess PPR, which brings challenges to managing PPR. In this context, the purpose of this study is to develop a PPR assessment model via an enhanced backpropagation neural network (BPNN). First, PPR assessment criteria considering project interdependencies are determined. Second, fuzzy logic is used to obtain original data for assessment criteria. Principal component analysis (PCA) is then employed to reduce the dimensionality of assessment criteria and derive the input and output of BPNN. Third, an improved genetic algorithm (IGA) is designed to optimize the initial weights and thresholds of BPNN. On this basis, the PCA-IGA-BPNN assessment model is constructed, followed by training and testing, possessing a test accuracy of 98.6%. Finally, comparison experiments are conducted from both internal and external perspectives. For internal comparison, the proposed model yields less mean absolute percentage error (MAPE), mean square error (MSE), and root mean square error (RMSE) than PCA-GA-BPNN, IGA-BPNN, PCA-BPNN and BPNN and offers the largest convergence speed (γ). As for external comparison, the presented model produces lower MAPE, MSE, and RMSE than Decision Tree (DT), Support Vector Machine (SVM), Random Forest (RF), and K-Nearest Neighbor (KNN) and has the largest coefficient of determination (R2). Results indicate that the established model performs more satisfactorily in assessing PPR. This research enriches PPR assessment methods and provides managers with a useful tool to evaluate PPR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hhhh777完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
May发布了新的文献求助10
2秒前
咔嚓发布了新的文献求助30
2秒前
酷波er应助欣慰冬亦采纳,获得10
2秒前
大力沛萍发布了新的文献求助10
3秒前
3秒前
星辰大海应助勤奋的凝丹采纳,获得10
3秒前
iNk应助寒舒采纳,获得10
3秒前
烟花应助寒舒采纳,获得10
4秒前
4秒前
碧蓝青梦发布了新的文献求助30
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
三岁半发布了新的文献求助10
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
枯藤应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
BowieHuang应助科研通管家采纳,获得10
5秒前
渭水飞熊完成签到,获得积分10
5秒前
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
活力小夏发布了新的文献求助10
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
枯藤应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
6秒前
酷波er应助科研通管家采纳,获得30
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759534
求助须知:如何正确求助?哪些是违规求助? 5520722
关于积分的说明 15394460
捐赠科研通 4896615
什么是DOI,文献DOI怎么找? 2633799
邀请新用户注册赠送积分活动 1581879
关于科研通互助平台的介绍 1537300