Deep Learning-Based Instance Segmentation of Aircraft in Aerial Images using Detectron2

人工智能 分割 深度学习 计算机视觉 航空影像 计算机科学 模式识别(心理学)
作者
C V Akshayanivashini,P Krisvanth
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4485468
摘要

The project aims to leverage the advanced features of the Detectron2 framework for object detection and instance segmentation in computer vision. The goal is to achieve state-of-the-art accuracy and robustness in detecting and segmenting objects in images, especially in scenarios with small or complex shapes and cluttered backgrounds. To accomplish this, the project uses the latest deep learning models based on the Faster R-CNN and Mask R-CNN architectures, which employ the region proposal network (RPN) and feature pyramid network (FPN) modules, respectively. The models are trained on large-scale datasets such as COCO and fine-tuned on specific domains to improve their performance on target objects. The models are also augmented with additional techniques such as data augmentation, multi-scale training, and hyperparameter optimization. The project further enhances the models by incorporating state-of-the-art techniques such as Cascade R-CNN, which uses a series of R-CNN models with increasing IoU thresholds to improve object detection accuracy. The project also explores using weighted feature fusion and self-attention mechanisms to capture object context better and improve segmentation accuracy. To evaluate the effectiveness of the proposed approach, the project conducts extensive experiments on various datasets, including COCO, YOLO, and custom datasets. The experimental results show that the proposed approach using Detectron2 and deep learning models achieves state-of-the-art performance in object detection and instance segmentation tasks, outperforming other state-of-the-art methods. Overall, the project demonstrates the effectiveness of using the latest deep learning models and advanced techniques to improve object detection and instance segmentation in computer vision. The proposed approach provides a valuable contribution to the field of computer vision and paves the way for future research in this area.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
、、、发布了新的文献求助10
刚刚
岩追研发布了新的文献求助10
1秒前
跃May发布了新的文献求助10
2秒前
2秒前
fanny发布了新的文献求助30
2秒前
2秒前
3秒前
奋斗小蜜蜂完成签到,获得积分10
3秒前
4秒前
hqy完成签到,获得积分20
5秒前
领导范儿应助charm12采纳,获得10
5秒前
感动又晴完成签到,获得积分10
5秒前
6秒前
苦难诗社发布了新的文献求助10
6秒前
6秒前
yatou5651发布了新的文献求助10
7秒前
7秒前
许子健发布了新的文献求助10
8秒前
nini发布了新的文献求助10
8秒前
8秒前
开朗的山彤应助张阿童木采纳,获得10
8秒前
追寻依风发布了新的文献求助10
8秒前
隐形曼青应助雾昂采纳,获得10
8秒前
9秒前
betsy发布了新的文献求助10
10秒前
wuhuhu关注了科研通微信公众号
10秒前
eAN完成签到,获得积分10
10秒前
zl完成签到,获得积分10
10秒前
桐桐应助yyyhhh采纳,获得10
10秒前
11秒前
亓大大发布了新的文献求助10
11秒前
香蕉觅云应助反方向的钟采纳,获得30
11秒前
hqy发布了新的文献求助20
11秒前
852应助Gotyababy采纳,获得10
11秒前
seven发布了新的文献求助10
12秒前
PAN完成签到,获得积分10
12秒前
13秒前
香蕉觅云应助Han采纳,获得10
13秒前
太阳发布了新的文献求助10
13秒前
Mia完成签到,获得积分10
13秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646