清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep Learning-Based Instance Segmentation of Aircraft in Aerial Images using Detectron2

人工智能 分割 深度学习 计算机视觉 航空影像 计算机科学 模式识别(心理学)
作者
C V Akshayanivashini,P Krisvanth
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4485468
摘要

The project aims to leverage the advanced features of the Detectron2 framework for object detection and instance segmentation in computer vision. The goal is to achieve state-of-the-art accuracy and robustness in detecting and segmenting objects in images, especially in scenarios with small or complex shapes and cluttered backgrounds. To accomplish this, the project uses the latest deep learning models based on the Faster R-CNN and Mask R-CNN architectures, which employ the region proposal network (RPN) and feature pyramid network (FPN) modules, respectively. The models are trained on large-scale datasets such as COCO and fine-tuned on specific domains to improve their performance on target objects. The models are also augmented with additional techniques such as data augmentation, multi-scale training, and hyperparameter optimization. The project further enhances the models by incorporating state-of-the-art techniques such as Cascade R-CNN, which uses a series of R-CNN models with increasing IoU thresholds to improve object detection accuracy. The project also explores using weighted feature fusion and self-attention mechanisms to capture object context better and improve segmentation accuracy. To evaluate the effectiveness of the proposed approach, the project conducts extensive experiments on various datasets, including COCO, YOLO, and custom datasets. The experimental results show that the proposed approach using Detectron2 and deep learning models achieves state-of-the-art performance in object detection and instance segmentation tasks, outperforming other state-of-the-art methods. Overall, the project demonstrates the effectiveness of using the latest deep learning models and advanced techniques to improve object detection and instance segmentation in computer vision. The proposed approach provides a valuable contribution to the field of computer vision and paves the way for future research in this area.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
儒雅的夏翠完成签到,获得积分10
4秒前
10秒前
zhang完成签到,获得积分10
14秒前
PACEPANG完成签到 ,获得积分10
20秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
詹姆斯哈登完成签到,获得积分10
23秒前
xz完成签到 ,获得积分10
34秒前
小万完成签到 ,获得积分10
38秒前
ssassassassa完成签到 ,获得积分10
40秒前
ailemonmint完成签到 ,获得积分10
43秒前
细心妙菡完成签到 ,获得积分10
44秒前
calphen完成签到 ,获得积分10
46秒前
淡定的如风完成签到,获得积分10
48秒前
美满的小蘑菇完成签到 ,获得积分10
52秒前
星辰大海应助淡定的如风采纳,获得10
52秒前
白嫖论文完成签到 ,获得积分10
53秒前
1分钟前
星辰大海应助凤凰山采纳,获得10
1分钟前
木木完成签到 ,获得积分10
1分钟前
综述王完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
V_I_G完成签到 ,获得积分10
1分钟前
1分钟前
doctorbin完成签到 ,获得积分10
1分钟前
我是大兴发布了新的文献求助10
1分钟前
estrella完成签到 ,获得积分10
1分钟前
等待的剑身完成签到,获得积分10
1分钟前
Dlan完成签到,获得积分10
1分钟前
三跳完成签到 ,获得积分10
1分钟前
我是大兴完成签到,获得积分10
1分钟前
1分钟前
笨蛋美女完成签到 ,获得积分10
1分钟前
哦哦完成签到 ,获得积分10
1分钟前
柚子皮发布了新的文献求助10
1分钟前
al完成签到 ,获得积分10
1分钟前
忧伤的慕梅完成签到 ,获得积分10
1分钟前
1分钟前
liu完成签到,获得积分10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968559
求助须知:如何正确求助?哪些是违规求助? 3513358
关于积分的说明 11167340
捐赠科研通 3248714
什么是DOI,文献DOI怎么找? 1794453
邀请新用户注册赠送积分活动 875030
科研通“疑难数据库(出版商)”最低求助积分说明 804664