Deep Learning-Based Instance Segmentation of Aircraft in Aerial Images using Detectron2

人工智能 分割 深度学习 计算机视觉 航空影像 计算机科学 模式识别(心理学)
作者
C V Akshayanivashini,P Krisvanth
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4485468
摘要

The project aims to leverage the advanced features of the Detectron2 framework for object detection and instance segmentation in computer vision. The goal is to achieve state-of-the-art accuracy and robustness in detecting and segmenting objects in images, especially in scenarios with small or complex shapes and cluttered backgrounds. To accomplish this, the project uses the latest deep learning models based on the Faster R-CNN and Mask R-CNN architectures, which employ the region proposal network (RPN) and feature pyramid network (FPN) modules, respectively. The models are trained on large-scale datasets such as COCO and fine-tuned on specific domains to improve their performance on target objects. The models are also augmented with additional techniques such as data augmentation, multi-scale training, and hyperparameter optimization. The project further enhances the models by incorporating state-of-the-art techniques such as Cascade R-CNN, which uses a series of R-CNN models with increasing IoU thresholds to improve object detection accuracy. The project also explores using weighted feature fusion and self-attention mechanisms to capture object context better and improve segmentation accuracy. To evaluate the effectiveness of the proposed approach, the project conducts extensive experiments on various datasets, including COCO, YOLO, and custom datasets. The experimental results show that the proposed approach using Detectron2 and deep learning models achieves state-of-the-art performance in object detection and instance segmentation tasks, outperforming other state-of-the-art methods. Overall, the project demonstrates the effectiveness of using the latest deep learning models and advanced techniques to improve object detection and instance segmentation in computer vision. The proposed approach provides a valuable contribution to the field of computer vision and paves the way for future research in this area.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
领导范儿应助跳跳妈妈采纳,获得10
刚刚
大个应助科研通管家采纳,获得30
刚刚
所所应助科研通管家采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
yangyang完成签到,获得积分10
刚刚
hhhblabla应助科研通管家采纳,获得10
刚刚
我是老大应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
情怀应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得30
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
忧伤的觅珍完成签到,获得积分20
1秒前
1秒前
vivelejrlee发布了新的文献求助20
2秒前
自来发布了新的文献求助10
3秒前
4秒前
4秒前
小黑完成签到,获得积分10
4秒前
4秒前
wennyzh完成签到,获得积分10
4秒前
4秒前
4秒前
酷炫的成风完成签到,获得积分10
5秒前
asir_xw发布了新的文献求助10
5秒前
刘一三完成签到 ,获得积分10
5秒前
拨云见日发布了新的文献求助10
5秒前
研友_VZG7GZ应助祝顺遂采纳,获得10
5秒前
吳某人完成签到,获得积分10
5秒前
严美娜发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
橘子完成签到,获得积分20
7秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1000
Les Mantodea de Guyane 800
More activities for teaching positive psychology: A guide for instructors 700
Mantids of the euro-mediterranean area 700
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3402620
求助须知:如何正确求助?哪些是违规求助? 3009489
关于积分的说明 8837153
捐赠科研通 2696413
什么是DOI,文献DOI怎么找? 1477859
科研通“疑难数据库(出版商)”最低求助积分说明 683261
邀请新用户注册赠送积分活动 677002