清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep Learning-Based Instance Segmentation of Aircraft in Aerial Images using Detectron2

人工智能 分割 深度学习 计算机视觉 航空影像 计算机科学 模式识别(心理学)
作者
C V Akshayanivashini,P Krisvanth
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4485468
摘要

The project aims to leverage the advanced features of the Detectron2 framework for object detection and instance segmentation in computer vision. The goal is to achieve state-of-the-art accuracy and robustness in detecting and segmenting objects in images, especially in scenarios with small or complex shapes and cluttered backgrounds. To accomplish this, the project uses the latest deep learning models based on the Faster R-CNN and Mask R-CNN architectures, which employ the region proposal network (RPN) and feature pyramid network (FPN) modules, respectively. The models are trained on large-scale datasets such as COCO and fine-tuned on specific domains to improve their performance on target objects. The models are also augmented with additional techniques such as data augmentation, multi-scale training, and hyperparameter optimization. The project further enhances the models by incorporating state-of-the-art techniques such as Cascade R-CNN, which uses a series of R-CNN models with increasing IoU thresholds to improve object detection accuracy. The project also explores using weighted feature fusion and self-attention mechanisms to capture object context better and improve segmentation accuracy. To evaluate the effectiveness of the proposed approach, the project conducts extensive experiments on various datasets, including COCO, YOLO, and custom datasets. The experimental results show that the proposed approach using Detectron2 and deep learning models achieves state-of-the-art performance in object detection and instance segmentation tasks, outperforming other state-of-the-art methods. Overall, the project demonstrates the effectiveness of using the latest deep learning models and advanced techniques to improve object detection and instance segmentation in computer vision. The proposed approach provides a valuable contribution to the field of computer vision and paves the way for future research in this area.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独特的师发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
13秒前
kukudou2完成签到,获得积分20
28秒前
46秒前
Rebeccaiscute完成签到 ,获得积分10
1分钟前
1分钟前
两个榴莲完成签到,获得积分0
1分钟前
zachary009完成签到 ,获得积分10
1分钟前
高大又蓝完成签到,获得积分10
2分钟前
高大又蓝发布了新的文献求助10
2分钟前
潜行者完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
bingo完成签到,获得积分10
3分钟前
重庆森林完成签到,获得积分10
3分钟前
Ada完成签到 ,获得积分10
3分钟前
笨笨的怜雪完成签到 ,获得积分10
4分钟前
CodeCraft应助水雾采纳,获得10
4分钟前
彩色的芷容完成签到 ,获得积分10
4分钟前
平常以云完成签到 ,获得积分10
4分钟前
鲤鱼山人完成签到 ,获得积分10
4分钟前
4分钟前
水雾发布了新的文献求助10
4分钟前
tt完成签到,获得积分10
5分钟前
Fairy完成签到,获得积分10
5分钟前
鹏程万里完成签到,获得积分10
6分钟前
暗号完成签到 ,获得积分0
6分钟前
LJJ完成签到,获得积分10
6分钟前
慕青应助研友_8RyzBZ采纳,获得10
7分钟前
ljl86400完成签到,获得积分10
7分钟前
7分钟前
研友_8RyzBZ发布了新的文献求助10
7分钟前
科研通AI6应助阳光的星月采纳,获得10
8分钟前
大个应助研友_8RyzBZ采纳,获得10
9分钟前
9分钟前
研友_8RyzBZ发布了新的文献求助10
9分钟前
123应助研友_8RyzBZ采纳,获得10
9分钟前
赘婿应助阳光的星月采纳,获得10
9分钟前
外向的妍完成签到,获得积分10
9分钟前
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5635162
求助须知:如何正确求助?哪些是违规求助? 4735022
关于积分的说明 14989826
捐赠科研通 4792862
什么是DOI,文献DOI怎么找? 2559967
邀请新用户注册赠送积分活动 1520215
关于科研通互助平台的介绍 1480311