Deep Learning-Based Instance Segmentation of Aircraft in Aerial Images using Detectron2

人工智能 分割 深度学习 计算机视觉 航空影像 计算机科学 模式识别(心理学)
作者
C V Akshayanivashini,P Krisvanth
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4485468
摘要

The project aims to leverage the advanced features of the Detectron2 framework for object detection and instance segmentation in computer vision. The goal is to achieve state-of-the-art accuracy and robustness in detecting and segmenting objects in images, especially in scenarios with small or complex shapes and cluttered backgrounds. To accomplish this, the project uses the latest deep learning models based on the Faster R-CNN and Mask R-CNN architectures, which employ the region proposal network (RPN) and feature pyramid network (FPN) modules, respectively. The models are trained on large-scale datasets such as COCO and fine-tuned on specific domains to improve their performance on target objects. The models are also augmented with additional techniques such as data augmentation, multi-scale training, and hyperparameter optimization. The project further enhances the models by incorporating state-of-the-art techniques such as Cascade R-CNN, which uses a series of R-CNN models with increasing IoU thresholds to improve object detection accuracy. The project also explores using weighted feature fusion and self-attention mechanisms to capture object context better and improve segmentation accuracy. To evaluate the effectiveness of the proposed approach, the project conducts extensive experiments on various datasets, including COCO, YOLO, and custom datasets. The experimental results show that the proposed approach using Detectron2 and deep learning models achieves state-of-the-art performance in object detection and instance segmentation tasks, outperforming other state-of-the-art methods. Overall, the project demonstrates the effectiveness of using the latest deep learning models and advanced techniques to improve object detection and instance segmentation in computer vision. The proposed approach provides a valuable contribution to the field of computer vision and paves the way for future research in this area.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
钙片儿完成签到,获得积分10
1秒前
淡然惜萱完成签到,获得积分10
1秒前
1秒前
Jackey完成签到,获得积分10
1秒前
1秒前
高灵雨完成签到,获得积分10
2秒前
嘻嘻发布了新的文献求助10
2秒前
笨笨烨华完成签到 ,获得积分10
2秒前
LINLINZONG完成签到,获得积分10
2秒前
MM完成签到,获得积分10
3秒前
zjq4302完成签到,获得积分10
3秒前
xiaosengliufa关注了科研通微信公众号
3秒前
Star完成签到 ,获得积分10
3秒前
JAYZHANG完成签到,获得积分10
3秒前
不以完成签到,获得积分10
4秒前
我根本没长尾巴完成签到,获得积分10
4秒前
sugy发布了新的文献求助10
4秒前
tyc发布了新的文献求助10
4秒前
5秒前
孙文远完成签到,获得积分10
5秒前
SciGPT应助不与旋覆采纳,获得10
5秒前
hhhhh发布了新的文献求助10
6秒前
hbhbj应助五四三二一采纳,获得20
6秒前
张兰兰发布了新的文献求助10
7秒前
7秒前
12334完成签到,获得积分10
7秒前
LamChem完成签到,获得积分20
7秒前
7秒前
上官若男应助王大力采纳,获得10
7秒前
Harrison发布了新的文献求助10
7秒前
水草帽完成签到 ,获得积分10
7秒前
霍霍完成签到,获得积分10
8秒前
jy完成签到,获得积分10
8秒前
刘十六完成签到 ,获得积分10
8秒前
QQ不需要昵称完成签到,获得积分10
9秒前
西升东落发布了新的文献求助10
9秒前
风清扬发布了新的文献求助10
10秒前
龚瑶完成签到 ,获得积分10
10秒前
青山完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401990
求助须知:如何正确求助?哪些是违规求助? 4520650
关于积分的说明 14080780
捐赠科研通 4434091
什么是DOI,文献DOI怎么找? 2434394
邀请新用户注册赠送积分活动 1426601
关于科研通互助平台的介绍 1405349