催化作用
异核分子
电化学
反应性(心理学)
化学
组合化学
活动站点
双金属片
原子经济
分子
纳米技术
Atom(片上系统)
选择性
吸附
材料科学
光化学
物理化学
有机化学
电极
计算机科学
嵌入式系统
病理
替代医学
医学
作者
Mohammad Jafarzadeh,Kim Daasbjerg
出处
期刊:ACS applied energy materials
[American Chemical Society]
日期:2023-06-23
卷期号:6 (13): 6851-6882
被引量:11
标识
DOI:10.1021/acsaem.3c00781
摘要
One of the strategies to mitigate the concentration of CO2 in the atmosphere and reduce the global warming effect is to capture CO2 and convert it to synthetic fuels and fine chemicals. Although CO2 is structurally and chemically stable, the electrochemical transformation has attracted much attention because it offers mild reaction conditions regarding temperature, pressure, and process controllability. Among various electrocatalysts, dual-atom catalysts (DACs) have been extensively developed in the past few years due to their unique features for the electrochemical reactions of small molecules. The catalytic activity of DACs in the electrochemical CO2 reduction reaction (eCO2RR) has surpassed single-atom catalysts (SACs) by providing a higher metal loading, two active sites (cf. one active site for SACs), a synergistic effect of adjacent metal atoms, the possibility of tuning the electronic state (adjusting the d-band center), and more possible configuration modes (side-on and side-bridge) for adsorption of CO2 (cf. only end-on and end-bridge modes for SACs). As a result, both higher reactivity and selectivity in eCO2RR can be achieved by breaking scaling relationships with more possible interactions between intermediates and active sites. This review highlights and discusses the recent progress in applying homo- and heteronuclear DACs for eCO2RR focusing on the synthesis, characterization, and electrochemical catalytic performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI