重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Centralized Feature Pyramid for Object Detection

特征(语言学) 计算机科学 棱锥(几何) 人工智能 判别式 目标检测 特征提取 模式识别(心理学) 特征学习 计算机视觉 代表(政治) 数学 语言学 政治 几何学 哲学 法学 政治学
作者
Quan Yu,Dong Zhang,Liyan Zhang,Jinhui Tang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 4341-4354 被引量:168
标识
DOI:10.1109/tip.2023.3297408
摘要

Visual feature pyramid has shown its superiority in both effectiveness and efficiency in a wide range of applications. However, the existing methods exorbitantly concentrate on the inter-layer feature interactions but ignore the intra-layer feature regulations, which are empirically proved beneficial. Although some methods try to learn a compact intra-layer feature representation with the help of the attention mechanism or the vision transformer, they ignore the neglected corner regions that are important for dense prediction tasks. To address this problem, in this paper, we propose a Centralized Feature Pyramid (CFP) for object detection, which is based on a globally explicit centralized feature regulation. Specifically, we first propose a spatial explicit visual center scheme, where a lightweight MLP is used to capture the globally long-range dependencies and a parallel learnable visual center mechanism is used to capture the local corner regions of the input images. Based on this, we then propose a globally centralized regulation for the commonly-used feature pyramid in a top-down fashion, where the explicit visual center information obtained from the deepest intra-layer feature is used to regulate frontal shallow features. Compared to the existing feature pyramids, CFP not only has the ability to capture the global long-range dependencies, but also efficiently obtain an all-round yet discriminative feature representation. Experimental results on the challenging MS-COCO validate that our proposed CFP can achieve the consistent performance gains on the state-of-the-art YOLOv5 and YOLOX object detection baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
余生完成签到,获得积分10
1秒前
rr发布了新的文献求助10
1秒前
现代的曼香完成签到,获得积分10
1秒前
FashionBoy应助沉默的钵钵鸡采纳,获得10
1秒前
乖乖完成签到,获得积分10
2秒前
2秒前
3秒前
哇哦完成签到,获得积分10
3秒前
3秒前
瀚子发布了新的文献求助20
3秒前
小古董发布了新的文献求助10
3秒前
3秒前
彭于晏应助聪明的可愁采纳,获得10
3秒前
落后的寄文完成签到,获得积分10
3秒前
see完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
可爱的函函应助冯珂采纳,获得10
5秒前
5秒前
852应助最最采纳,获得10
5秒前
蒙奇路飞发布了新的文献求助10
5秒前
黄钦清发布了新的文献求助10
7秒前
堪稀完成签到,获得积分10
7秒前
goufufu完成签到,获得积分10
7秒前
7秒前
研友_nVNBVn发布了新的文献求助10
7秒前
李爱国应助诚心青曼采纳,获得10
7秒前
7秒前
龙彦完成签到,获得积分10
7秒前
TT发布了新的文献求助10
8秒前
万能图书馆应助Snoopy采纳,获得10
9秒前
9秒前
hym发布了新的文献求助10
9秒前
发顺丰发布了新的文献求助10
9秒前
weiwei完成签到,获得积分10
9秒前
9秒前
stella完成签到,获得积分10
10秒前
CharlieYue发布了新的文献求助10
10秒前
钟意发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466602
求助须知:如何正确求助?哪些是违规求助? 4570422
关于积分的说明 14325272
捐赠科研通 4496951
什么是DOI,文献DOI怎么找? 2463624
邀请新用户注册赠送积分活动 1452586
关于科研通互助平台的介绍 1427567